FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

WILMINGTON HARBOR NAVIGATION IMPROVEMENTS Appendix C - Geotechnical Engineering

June 2014

US Army Corps of Engineers

Wilmington District

Appendix C

Geotechnical Engineering

Contents

1.0 Introduction
1.1 Description of Proposed Project and Alternatives
1.1.1 Turning Basin
1.1.2 Battery Island Turn
1.1.3 Entrance Channel near Bald Head Island2
2.0 Regional and Site Geology
3.0 Investigations
3.1 Turning Basin
3.1.1 Remedial Investigation Results for the North Carolina State Ports Authority Southern Wood Piedmont Site
3.1.2 Subsurface Data 5
3.1.3 Eagle Island
3.2 Battery Island Turn 32
3.2.1 Data Acquisition
3.3 Entrance Channel near Bald Head Island 39
3.3.1 Data Acquisition
4.0 Conclusions and Recommendations 44
5.0 References
Attachment A: SPT & CPT Boring Logs for Eagle Island A-1
Attachment B: Data Used in Stability and Seepage AnalysisB-1
Attachment C: Boring Logs for Battery Island Turn C-1
Attachment D: Boring Logs for Entrance Channel near Bald Head Island D-1

List of Figures

Figure 1.	Wilmington Harbor Project vicinity map showing Turning Basin, Battery Island Turn, and Entrance Channel near Bald Head Island1	
Figure 2.	Project site location as it relates to the geological setting of the coastal plain, NC-SC	3
Figure 3.	HTW Site Location5	5
Figure 4.	Subsurface Data for Turning Basin Sta. 0+00 to Sta. 39+70.	5
Figure 5.	Subsurface Data for Turning Basin Sta. 39+70 to Sta. 84+85.55	7
Figure 6.	Proposed turning basin widening top-of-rock elevations)
Figure 7.	Typical CPT transects for cross-sections 1 and 211	L
Figure 8.	Locations of Cross-Sections Analyzed at Eagle Island, NC)
Figure 9.	Photo of undisturbed sample UD-14	ŀ
Figure 10). All sample locations used in the stability analysis14	ŀ
Figure 11	. Geometry of soil layers for cross-section 1, existing condition18	3
Figure 12	2. Closer view of the geometry of soil layers for cross-section 118	3
Figure 13	B. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 1, existing condition, using known points of strength18	3
Figure 14	l. Geometry of soil layers for cross-section 1, future with project condition18	3
Figure 15	5. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 1, future with project condition, using known points of strength	3
Figure 16	Geometry of soil layers for cross-section 2 existing condition	, J
Figure 17	7 Geometry of soil layers for cross-section 2, existing condition	à
Figure 18	The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized	•
	model for cross-section 2, existing condition, using known points of strength)
Figure 19	9. Geometry of soil layers for cross-section 2, future with project condition)
Figure 20	D. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 2, future with project condition, using known points of strength	L
Figure 21	Pore-water-pressure at cross-section 1 from SEEP/W for existing condition	<u>,</u>
Figure 22	2. Pore-water-pressure at cross-section 1 from SEEP/W with project condition	<u>,</u>
Figure 23	B. Pore-water-pressure at cross-section 2 from SEEP/W for existing condition	,
Figure 24	I. Pore-water-pressure at cross-section 2 from SEEP/W with project condition	<u>,</u>
Figure 25	5. Entry and Exit method showing the factor of safety for a left to right circular slip surface during 'existing' conditions at cross-section 124	ł

Wilmington Harbor Improvements Project | iii Appendix C - Geotechnical Engineering |

Figure 26.	Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'with project' conditions at cross-section 1	.24
Figure 27.	Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'existing conditions' at cross-section 2.	.25
Figure 28.	Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'with project' conditions at cross-section 2.	.25
Figure 29.	Fully Specified method showing the factor of safety for a left to right slip surface during 'existing' conditions at cross-section 1	. 25
Figure 30.	Fully Specified method showing the factor of safety for a left to right slip surface during 'with project' conditions at cross-section 1	.26
Figure 31.	Fully Specified method showing the factor of safety for a left to right slip surface during 'existing' conditions at cross-section 2	.26
Figure 32.	Fully Specified method showing the factor of safety for a left to right slip surface during 'with project' conditions at cross-section 2.	.26
Figure 33.	Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 1 using the Entry and Exit Method	.27
Figure 34.	Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 1 using the Fully Specified Method	.27
Figure 35.	Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 1 using the Entry and Exit Method.	.28
Figure 36.	Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 1 using the Fully Specified Method.	.28
Figure 37.	Factor of Safety vs Lambda (λ) plot for with 'existing' condition at cross-section 2 using the Entry and Exit Method.	.29
Figure 38.	Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 2 using the Fully Specified Method.	.29
Figure 39.	Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 2 using the Entry and Exit Method.	.30
Figure 40.	Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 2 using the Fully Specified Method.	.30
Figure 41.	Vibracore locations performed in 2012 at the Battery Island turn.	.33
Figure 42.	Geologic cross-section A-A´,Battery Island Turn	.34
Figure 43.	2-D Geologic cross-section in Battery Island Turn for line 1-1'	.35
Figure 44.	Vibracore locations performed in 2012 at the Entrance Channel near Bald Head Island	.40
Figure 45.	2-D Geologic cross-section in Entrance Channel near Bald Head Island for line B-B'	.41
Figure 46.	2-D Geologic cross-section in Entrance Channel near Bald Head Island for line C-C'.	.42
Figure 47.	Grain size distribution results for EI-2011-SPT-4.	B-2

Wilmington Harbor Improvements Project | iv Appendix C - Geotechnical Engineering |

Figure 48. Grain size distribution results for EI-2011-SPT-4 (cont)I	B-3
Figure 49. Grain size distribution results for EI-2011-SPT-14.	B-4
Figure 50. Grain size distribution results for EI-2011-SPT-14 (cont)	B-5
Figure 51. Atterberg Limit testing results for EI-2011-SPT-4.	B-6
Figure 52. Atterberg Limit testing results for EI-2011-SPT-14.	B-7
Figure 53. CU test results for UD-4	B-8
Figure 54. CU results for UD-4 (cont)I	B-9
Figure 55. UU test results for UD-14B-	-10
Figure 56. UU test results for UD-14 (cont)B-	-11
Figure 57. 1-D Consolidation test results for UD-4B-	-12
Figure 58. 1-D Consolidation test results for UD-14 (Cross-Section 1 Undisturbed Sample 1)B-	-13
Figure 59. 1-D Consolidation test results for UD-14 (Cross-Section 1 Undisturbed Sample 2)B-	-14

List of Tables Table 1. Washprobe data collected outside of the authorized Turning Basin navigation channel and within proposed Turning Basin project.8 Table 4. Design shear strengths for UD-4 and UD-14......15 Table 5. Material properties for soils used in analysis......16 Table 7. Slope Stability results showing computed factors of safety for cross-sections 1 and 2......31 Table 10. Results from the 2012 USACE vibracore borings for the Entrance Channel near Bald Table 11. Cohesion spatial function values used for cross-section 1 at Sta. 223+00.B-15 Table 12. Cohesion spatial function values used for cross-section 1 at Sta. 322+00.B-15 Table 13. Cohesion spatial function values used for cross-section 1 at Sta. 396+00.B-15 Table 14. Cohesion spatial function values used for cross-section 1 at Sta. 176+00.B-16 Table 15. Cohesion spatial function values used for cross-section 1 at Sta. 128+00.B-16 Table 16. Cohesion spatial function values used for cross-section 2 at Sta. 206+00.B-17 Table 17. Cohesion spatial function values used for cross-section 2 at Sta. 265+00.B-17 Table 18. Cohesion spatial function values used for cross-section 2 at Sta. 303+00.B-18 Table 19. Cohesion spatial function values used for cross-section 2 at Sta. 142+00.B-18 Table 20. Cohesion spatial function values used for cross-section 2 at Sta. 83+00.B-19 Table 21. Cohesion spatial function values used for cross-section 2 at Sta. 351+00.B-19 Table 22. Cohesion spatial function values used for cross-section 2 at Sta. 417+50.B-20 Table 23. Cohesion spatial function values used for cross-section 2 at Sta. 507+50.B-20 Table 24. Cohesion spatial function values used for cross-section 2 at Sta. 53+00.B-21

1.0 Introduction

The alternatives that are being evaluated in this study are the widening and/or relocation of the Turning Basin, Battery Island Turn, and the Entrance Channel near Bald Head Island (Figure 1). The alternatives are evaluated using a variety of methods, which include historical data compilation, subsurface investigations, laboratory testing, and seepage and stability analyses using GeoStudio software. The viability of widening the Turning Basin is evaluated based on determining the potential impacts to the Southern Wood Piedmont and North Carolina State Ports Authority properties, which contain groundwater and soil contaminants on the east side of the river, and slope stability of Eagle Island dikes on the west side of the river. Dredged material disposal options for all three alternatives were evaluated using subsurface investigations, top of rock elevation determinations, and grain size analyses of unconsolidated material.

Figure 1. Wilmington Harbor Project vicinity map showing Turning Basin, Battery Island Turn, and Entrance Channel near Bald Head Island.

1.1 Description of Proposed Project and Alternatives

1.1.1 Turning Basin

The current size of container vessels that call on the port of Wilmington are up to 965 feet long and 107 feet wide (beam). These ships are referred to as Panamax size ships and are 100 feet longer than the design vessel accommodated in the 1996 project modifications. The existing Turning Basin provides a width of 1200 feet, which is inadequate for the larger post-Panamax container vessels. *Post-Panamax* or *over-Panamax* denotes vessels larger than Panamax vessels that do not fit in the Panama Canal, therefore are unable to call on the port. The Project Delivery Team (PDT) considered two options to increase the size of the turning basin. The first option involves creating a new 1450 feet wide turning basin, approximately 2 miles south of the existing one, at the confluence of the Brunswick and Cape Fear Rivers. This option has been excluded because of buried utility lines that would have to be relocated and vessels docked north of the turning basin would have to transit backwards 2 miles downstream before being able to turn. The second option consisted of widening the existing Turning Basin to 1450 feet, and the length would remain 1000 feet. In addition, the depth of the Turning Basin would remain as authorized at 42 feet plus the 1 foot required depth¹, plus 2 feet of allowable overdepth below mean low water².

1.1.2 Battery Island Turn

Battery Island Channel is adjoined by the Lower Swash Channel to the northwest and by the Southport Channel to the southeast. The Battery Island Turn is problematic for the larger container vessels currently calling on the Port of Wilmington. Transiting vessels often are delayed, as there are draft restrictions under certain conditions for wind and tide. Realigning or widening the Battery Island Turn has the potential to improve navigation safety and efficiency and reduce vessel delays.

1.1.3 Entrance Channel near Bald Head Island

The current Bald Head Shoal Channel alignment, located west of Bald Head Island and adjoining the Smith Island Channel, has proven susceptible to rapid and persistent shoaling. Increasing the distance between the Baldhead Shoal Channel area and Bald Head Island may reduce future maintenance costs, improve overall reliability, and increase full channel availability.

2.0 Regional and Site Geology

The Wilmington Harbor Project is located in the Atlantic Coastal Plain Physiographic Province (Figure 2). The project area is part of the Outer Coastal Plain of the Carolinas and has elevations less than 100 feet above Mean Sea Level (MSL). The low relief of the region tends to preserve the depositional pattern produced by eustatic sea-level fluctuation and shoreline migration. Erosional scarps and ancient marine terraces, which formed between depositional cycles, are distinct and the units they contain may only be mapped locally on the basis of elevation. The marine transgressive deposits are relatively thin and discontinuous, while regressive sequences predominate the area. Steadily migrating to the southwest over time, the Cape Fear River has

¹ The 1 foot required overdepth is due to the presence of rock for safety clearance purposes.

² After the initial construction, future maintenance dredging of the Turning Basin will be to 42 feet plus 2 feet of allowable overdepth.

deposited considerable fluvial sediments as it drains the Piedmont and erodes the Coastal Plain marine terraces. River terrace deposits generally consist of fine, poorly-graded sands capping a fining-upward sequence of sandy fluvial sediments, which in turn overlie Cretaceous marine and deltaic silty sands, clays, and limestone (Soller, 1988).

Figure 2. Project site location as it relates to the geological setting of the coastal plain, NC-SC.

The pattern of marine and fluvial terrace deposits results in a relatively flat or gently seaward sloping topography. Although the upland areas surrounding the project site are generally between 30 and 40 feet above MSL, the maximum relief is 80 feet, represented by high dune deposits in Wilmington, NC. There are some areas of localized karst terrain, where dissolution of the underlying limestone bedrock has resulted in sinkhole development.

The lithologic units that underlie Wilmington Harbor have largely been identified and described through previous rock coring operations. These units were originally described in the Final Feasibility Report and Environmental Impact Statement for the Cape Fear-Northeast Cape Fear Rivers Comprehensive Study conducted in 1996. The units include, from oldest to youngest, the Cretaceous Peedee Formation, the Upper Cretaceous Rocky Point Member of the Peedee Formation, a Lower Paleocene unit that was informally designated "olive sand", a Paleocene or Lower Eocene unit that was informally designated "turritellid limestone", the Eocene Castle Hayne Formation, the Oligocene Trent Formation, and the Pleistocene Waccamaw Formation. The Peedee Formation comprises the bedrock underlying Wilmington Harbor from the northern Federal Project limit to the southern end of Lower Brunswick Channel. Rock cores taken from the Turning Basin indicate that the Rocky Point Member is present in areas that are not heavily eroded.

The only bedrock unit underlying the Lower Swash and Battery Island channels is the Castle Hayne Formation. Little is known of the bedrock underlying Battery Island, Southport, Baldhead-Caswell, and Smith Island channels. Baldhead Shoals channel is underlain by the turritellid limestone unit to Sta. (station) 220+00, and by the Castle Hayne Formation southward to the mouth of the entrance channel. Detailed description of all units within Wilmington Harbor, their stratigraphic relationships, textural features and lithology can be found in Zullo et al. 1992 & 1993. The bedrock formations that were encountered during previous subsurface investigations indicate that the Turning Basin is underlain by bedrock belonging to the Peedee Formation and its uppermost stratum, the Rocky Point Member.

The Peedee Formation is described as consisting of interbedded silty sand (SM) or clayey sand (SC), and sandy limestone. The thickness of the limestone varies from a few inches thick to several feet thick. Cementation and hardness, as determined from unconfined compressive strength, varies from a few hundred pound-force per square inch (psi) to several thousand psi. The Peedee Formation is a moderately hard to hard, light gray to gray, fine to medium grained, sandy, fossiliferous limestone that is porous and vuggy. The rock cores recovered during drilling operations display variable degrees of fracturing; fractures may be clean or in-filled with sand or clay. The Peedee Formation is conformably overlain by the slightly younger Rocky Point Member, that were preserved and not removed by erosion.

The Rocky Point Member forms the uppermost unit of the Peedee Formation, and was initially recognized in core borings taken in 1994. These borings were drilled within Lower Brunswick, Upper Big Island, and Snows Marsh channel. Later drilling operations conducted in 1998 revealed that the Rocky Point Member was also present within the Turning Basin, but was not recognized by the earlier work. The Rocky Point Member is a moderately hard to hard, gray, fine to coarse grained, sandy, moldic limestone. The rock contains zones of closely spaced fractures which are either open and filled with sand or cemented with calcite.

The depth of the top of the rock (TOR) varies depending upon the location. Inside the authorized U.S. Army Corps of Engineers (USACE) navigation Turning Basin range, the approximate top of rock (TOR) elevation ranges between -44.0 to -55.8 ft MLLW (ft). The assumed TOR values outside of the authorized USACE navigation channel (between the east side of Eagle Island and the west side of the Turning Basin range, ranges from elevations -16.1 to -50.9 ft MLLW (ft).

3.0 Investigations

3.1 Turning Basin

3.1.1 Remedial Investigation Results for the North Carolina State Ports Authority Southern Wood Piedmont Site

Widening of the Turning Basin required an initial evaluation of an adjacent area referred to as the North Carolina State Ports Authority Southern Wood Piedmont Site (Figure 3). After evaluation, the North Carolina State Ports Authority Southern Wood Piedmont Site was eliminated from further consideration for Turning Basin Widening. It was found that the sediment along the waterfront of the Southern Wood Piedmont facility is contaminated primarily with arsenic and polycyclic aromatic hydrocarbons (PAHs) (byproducts of petroleum processing or combustion). Most of the site has contamination that is slightly above the U.S. Environmental Protection Agency (USEPA) regional preliminary remediation goals (PRGs), but there are some isolated areas that are contaminated well above the PRGs for arsenic and PAHs. Several of the

Wilmington Harbor Improvements Project 5 Appendix C - Geotechnical Engineering

areas that are well above the PRGs are within 50 feet of the waterfront. Generally, the contaminated soil between 50 and 150 feet of the waterfront is slightly above the PRGs. In addition, the contaminated areas well above the PRG for dioxins and furans have been detected in the soil within 200 feet of the waterfront. Since these contaminants are within the area to be excavated, hazardous waste management may be required prior to any site modification. For a complete description of the investigations and results, see the reports, "Supplemental Remedial Investigation Report, Southern Wood Piedmont and North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina, NCD 058 517 467" dated October 30, 2001 and "Additional DNAPL and Groundwater Delineation Supplemental Remedial Investigation Report Southern Wood Piedmont and North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina State Ports Authority Site, Wilmington, New Hanover County, North Carolina, NCD 058 517 467" dated July 31, 2003.

Figure 3. HTW Site Location.

3.1.2 Subsurface Data

A total of 51 borings have been collected within the Turning Basin between Sta. 0+00 and Sta. 39+70 since 1993 (Figure 4). Of the 51 borings, 34 were washprobes. Washprobes are used in determining the elevation of the refusal surface. The elevation of the top of bedrock may be inferred from the washprobe refusal; however, refusal can also result from encountering resistant cemented-compacted soils or buried objects. The results from a washprobe survey should always

be compared to borings, where sampling has been conducted. The remaining borings include 15 rock cores and two Standard Penetration Test (SPT) borings. Between Sta. 39+70 and Sta. 84+85, 115 borings have been collected since 1993 (Figure 5). Most of the borings collected were washprobes. From previous dredging within the Turning Basin navigation channel, the top of bedrock ranges from elevations -44.0 to -55.8 feet MLLW (ft) and sediment generally consist of silts and organic material (MH-OH), well-graded sand (SW) and silty gravel (GM).

Figure 4. Subsurface Data for Turning Basin Sta. 0+00 to Sta. 39+70.

Figure 5. Subsurface Data for Turning Basin Sta. 39+70 to Sta. 84+85.55.

The assumed top of rock values outside of the Turning Basin navigation channel were derived by calculating the Mean Lower Low Water (MLLW) elevation minus the refusal depth encountered by washprobe penetration. The survey-grade HYPACK navigation system on the USACE Vessel *SNELL* was used to determine washprobe coordinates. Table 1 shows the river bottom elevation and the assumed top of rock obtained from the washprobes performed on 10 July 2012 within the proposed Turning Basin widening. Because the washprobes were collected outside of the authorized channel, recent deepening in 2013 did not affect top-of-rock elevations.

Hole	м	LLW (feet)	NC State Plane Feet Coordinates			
Number	River Bottom	Assumed Top of Rock	Northing (N)	Easting (E)		
WH12-P-1	-15.22	-36.5	2314985	170424		
WH12-P-2	-34.32	-50	2315317	171330		
WH12-P-3	-23.58	-36.9	2315463	171892		
WH12-P-4	-22.22	-34	2315412	171731		
WH12-P-5	-25.77	-40.5	2315251	171226		
WH12-P-6	-21.47	-34.7	2315313	171414		
WH12-P-7	-22.96	-35.3	2315366	171593		
WH12-P-8	-19.54	-36.5	2315185	171038		
WH12-P-9	-21.2	-36.6	2315141	170901		
WH12-P-10	-27.23	-49	2315117	170731		
WH12-P-11	-27.89	-37.4	2315047	170565		
WH12-P-12	-3.64	-50.5	2315375	171890		
WH12-P-13	-4.94	-44.2	2315332	171755		
WH12-P-14	-5.21	-34.8	2315301	171618		
WH12-P-15	-3.5	-22.2	2315228	171437		
WH12-P-16	-4.17	-26.2	2315188	171257		
WH12-P-17	-5.82	-35.8	2315130	171072		
WH12-P-18	-6.03	-30.6	2315080	170909		
WH12-P-19	-8.47	-38	2315056	170764		
WH12-P-20	-6.68	-50.9	2314935	170463		
WH12-P-22	-2.5	-44.4	2315194	171418		
WH12-P-23	-2.81	-35.6	2315065	171050		
WH12-P-48	-5.12	-16.1	2314963	170627		

Table 1. Washprobe data collected outside of the authorized Turning Basin navigation channel and within proposed Turning Basin project.

Spatial analysis using ArcMap was used to interpolate between the washprobes locations and to contour the refusal elevations. Figure 6 shows the presence of material that may potentially require rock dredging outside of the existing authorized Wilmington Harbor navigation channel.

Figure 6. Proposed turning basin widening top-of-rock elevations.

3.1.3 Eagle Island

Eagle Island has been used as a dredge disposal area since the late 1970's and is the primary disposal site for dredged material from the upper portion of Wilmington Harbor. The USACE owns the 740-acre dredge disposal area. Currently, dredged material is disposed of in Cells 1, 2, and 3, which are approximately 220, 260 and 260 acres, respectively. The dikes at Eagle Island were constructed on a marsh foundation with an original elevation of approximately 7 feet NAVD88. The marsh foundation consists of soft deposits extending down to approximately

-38 feet NAVD88. Soil boring data indicate that the dredged material confined in cells 2 and 3 is over 20 feet thick in some areas and consists primarily of fine-grained, organic rich material, though there are some lenses of sand located along the eastern side of the disposal area.

Numerous subsurface investigations have been performed at Eagle Island since the 1970's. The most recent historical investigations include Cone Penetration Test (CPT) soundings acquired in 1999, SPT borings performed in 2004, and additional SPT borings performed in the vicinity of the failed area on the north side of Cell 3 in 2006. A typical borehole has 20 to 30 feet of soft silt or clay, a layer of sand ranging in thickness from 0.5 to 30 feet (average of 7.2 feet), and limestone bedrock. The strength of the foundation silt and clay is very low and ranges from approximately 150 psf to 1000 psf. There is a sand layer beneath cell 3 which starts at the approximate elevation of -30 feet NAVD88. The typical liquid limit values of the foundation soils range from 70 to 200 and natural moisture content ranges from 90 to 177 percent. It should be noted that soils with high liquid limits and high moisture contents contain a considerable amount of organics, which cause the soil to be light, compressible, drain very slow, and have low permeability.

From September through November 2011, a comprehensive subsurface investigation was performed by Terracon at Eagle Island. The data from this investigation were used to model stability of Eagle Island shown in Attachment 1. The investigation consisted of CPT, SPT, auger boring and bulk sampling, undisturbed sampling, piezometer installation, and in-place vane shear testing. Lab testing was also performed and included soil classification, sieve analysis, Atterberg limits, standard proctor tests, triaxial tests, and one-dimensional consolidation tests.

3.1.3.1 Field and Laboratory Test Results

Based on the CPT soundings and SPT borings, the correlation of soil behavior between the CPT sounding logs and the SPT borings are generally in agreement. The predominant soil types encountered within the embankment and the foundation are fine grained soils consisting of silts or clays, with varying organic content. The undrained shear strength of the fine grained materials calculated from the CPT soundings indicates that the materials are generally very soft to medium stiff in consistency. For a complete description of the investigations and the results, see the report, Geotechnical Report, Eagle Island Dredge Disposal Area, Contract W91236-09-D-0029 by Terracon.

The geometry for the seepage and slope stability cross-sections were analyzed in GeoStudio based on the topographic and planimetric survey conducted by Joyner Keeny, PLLC on 15 March 2012 titled: *Report of Survey on Topographic LiDAR Survey of the EAGLE ISLAND DISPOSAL AREA CELLS 1, 2, 3, and 4 Brunswick County, North Carolina* under Contract No. W912HN-10-D-0011, Task #14 and from the USACE Wilmington District, Turning Basin Condition Survey dated 15 November 2012.

Cross-section 1 is located on the southeast side of Cell 3 at Eagle Island Sta. 144+96 (Cape Fear River Turning Basin Sta. 42+50). The corresponding CPT locations used for the analysis were: CPT-14A, CPT-14B, CPT-14C, CPT-14D, and CPT-14E. Cross-section 2 is located approximately 813 feet south of cross-section 1 at Eagle Island Sta. 153+09 (Cape Fear River Turning Basin Sta. 50+00) on the northeast side of Cell 2. Because cross-section 2 is located approximately 300 feet south of CPT transect 4 and 690 feet north of CPT transect 5, the data for the corresponding hole (i.e. CPT soundings A, B, C, D, and E as shown in Figure 7) was

combined and the lesser value of cohesion (C) at an elevation was input in the spatial function of SLOPE/W. The corresponding CPT locations used for the analysis at cross-section 2 were: CPT-4A & CPT-5A, CPT-4B & CPT-5B, CPT-4C & CPT-5C, CPT-4D & CPT-5D, and CPT-4E & CPT-5E. The complete result of CPT soundings at transects 4, 5, and 14 are located in the report, Geotechnical Report, Eagle Island Dredge Disposal Area, Contract W91236-09-D-0029 by Terracon.

Figure 7. Typical CPT transects for cross-sections 1 and 2.

Cross-sections 1 and 2 were determined to be the most critical to analyze for the widening of the Turning Basin into Eagle Island due to proximity of the toe of the existing dikes to the proposed widening area. See Figure 8 for locations of the cross-sections analyzed in the seepage and stability analyses.

Figure 8. Locations of Cross-Sections Analyzed at Eagle Island, NC.

Grain size analysis, Atterberg limits testing, and visual engineering soil classification were performed on the SPT samples EI-2011-SPT-4 and EI-2011-SPT-14.

The U.S. sieve sizes were used for the grain size analyses were: 3 in., 1-1/2 in., 3/4 in., 3/8 in., No. 4, No. 8, No. 16, No. 30, No. 50, No. 100, and No. 200. The results of the sieve analyses are found in Attachment B, Figure 47 thru Figure 50.

The Atterberg limits tests are a series of tests that define the relationship between moisture content and soil consistency. This series include three separate tests: the liquid limit test, the plastic limit test, and the shrinkage limit test. The test results are expressed in terms of moisture content, with the percentage sign dropped: the liquid limit (LL) and plastic limit (PL). The results are then plotted against the plasticity index. The plasticity index (PI) is a measure of the range of moisture contents that encompass the plastic state. Soils with a large clay content retain this plasticity state over a wide range of moisture contents, and thus have a high plasticity index.

Clean sands and gravels are considered to be nonplastic (NP). The results of the Atterberg limits test for these samples can be found in Attachment B. Below, Tables 3 and 4 include summaries of the laboratory results for SPT borings EI-2011-SPT-4 and EI-2011-SPT-14.

Borehole	Elevation	Depth	Class- ification	Liquid Limit	Plastic Limit	Plasticity Index	% Sand	% Fines	Water Content (%)	Dry Density (pcf)	Organic Content (%)
EI-2011- SPT-4	30.0	3.0	SP-SM	NP	NP	NP	65	12	12		
EI-2011- SPT-4	23.0	10.0	MH	57	31	26		56	40		
EI-2011- SPT-4	16.5	16.5	MH	90	55	35		94	88		
EI-2011- SPT-4	7.5	25.5	СН	83	36	47		74	79		
EI-2011- SPT-4	1.0	32.0							66	60.4	
EI-2011- SPT-4	-4.0	37.0	MH	65	35	30	36	63	86	48.7	
EI-2011- SPT-4	-15.0	48.0	GW	NP	NP	NP	46	2	285		
EI-2011- SPT-4	-16.5	49.5							346		
EI-2011- SPT-4	-24.0	57.0	SP	NP	NP	NP	97	3	24		

Table 2. Summary of laboratory results for boring EI-2011-SPT-4.

Table 3. Summary of laboratory results for boring EI-2011-SPT-14.

Borehole	Elevation	Dept h	Class- ificatio n	Liqui d Limit	Plasti c Limit	Plasticit y Index	% Sand	% Fines	Water Conten t (%)	Dry Density (pcf)	Organic Content (%)
EI-2011-SPT- 14	28.5	4.5	SP-SM	NP	NP	NP	80	7	4		
EI-2011-SPT- 14	21.0	12.0	SP-SM	NP	NP	NP	87	7	16		
EI-2011-SPT- 14	3.0	30.0	SP	NP	NP	NP	96	4	27		
EI-2011-SPT- 14	-4.0	37.0	MH	66	38	28	31	68	91	46.3	
EI-2011-SPT- 14	-10.0	43.0	MH	76	38	38	10	90			
EI-2011-SPT- 14	-16.5	49.5							415		38.3
EI-2011-SPT- 14	-19.5	52.5	SM	75	45	30	53	38	100		
EI-2011-SPT- 14	-24.0	57.0	SP	NP	NP	NP	97	3	24		
EI-2011-SPT- 14	-30.0	63.0	SP-SM	NP	NP	NP	90	10	25		

Undisturbed sampling using a Shelby Tube, recovers soil completely intact and its in-place structure and stresses are assumed not modified in any way, making recovered samples desirable for laboratory test that depend on the structure of the soil. Such samples are ideal in consolidation tests and shear strength tests. Figure 9 is a photograph of an undisturbed soil sample labeled UD-14. This sample represents the corresponding boring hole, EI-2011-SPT-14,

at transect 14. The elevation of the sample is from -4 feet to -6 feet MSL. Figure 10 shows all sample locations used in this analysis.

Figure 9. Photo of undisturbed sample UD-14.

Figure 10. All sample locations used in the stability analysis.

The consolidated undrained (CU) triaxial shear (R) tests, with pore-pressure measured, were performed using material from the undisturbed sample UD-4. Each CU test consolidated the sample to a predetermined confining pressure. After reaching the predetermined confining pressure water is not allowed to drain from the sample and the axial load is increased on the sample. As the axial load increases the sample will eventual start to shear and will fail. During each test, the pore pressures were measured. The CU testing of UD-4 measured the total and effective strength parameters for three confining pressures. See the results in Attachment B, Figure 53 and Figure 54.

An unconsolidated undrained (UU) triaxial shear (Q) test was performed using material from sample UD-14. This test was performed to determine the undrained strength and the stress-strain material relationships. The UU test is performed similarly as the CU test except the test specimens are not allowed to drain during any part of the test. During the UU test, the specimen is sheared in compression at a constant rate of axial deformation as shown in Attachment B, Figure 55 and Figure 56.

One-Dimensional (1-D) Consolidation (S) testing was performed on material from cross-section 2, undisturbed sample UD-4 at elevation -4 feet to -6 feet NAVD88 and two undisturbed samples labeled UD-14 at cross-section 1, elevations -4 feet to -6 feet and -10 feet to -12 feet NAVD88. This consolidation test is used to determine the magnitude and time rate of consolidation of a laterally restrained soil sample. The results of the 1-D consolidation testing for UD-4 and UD-14 are shown in Attachment B, Figure 57, Figure 58, and Figure 59.

3.1.3.2 Design Shear Strengths

The design shear strength of the soils used in this analysis is presented in Table 4. The strength data for these soils are from laboratory test performed by Terracon. The tests corresponding to the drainage conditions are: unconsolidated-undrained (Q) tests, in which the water content is kept constant during the test; consolidated-undrained (R) tests, in which consolidation or swelling is allowed under initial stress conditions, but the water content is kept constant during application of shearing stresses; and consolidated-drained (S) tests in which full consolidation or swelling is permitted under the initial stress conditions and also for each increment of loading during shear.

Borehole	hole Sample Depth		Depth (ft) Specimen		Water Content (%)		Saturation (%)		C (psf)		ф (degrees)	
		(11)		Initial	At Test	Initial	At Test	Total	Effective	Total	Effective	
UD-4	1	37' - 39'	1	83.9	76.5	96.1	100					
UD-4	1	37' - 39'	2	81.5	72.4	99.5	100	240	70.8	14.2	31.41 ³	
UD-4	1	37' - 39'	3	84.6	72	99.1	100					
UD-14	1	37' - 39'	1	81.5	81.5	100.8	100.8	8	348.9		04	

Table 4. Design shear strengths for UD-4 and UD-14.

3.1.3.3 Material Properties

The material properties for each material layer modeled using GeoStudio are listed in Table 5. For existing conditions, an example of the model geometry at cross-section 1 is shown in Figure 11, while an example of the cohesion spatial function is shown in Figure 13. The characteristics

³ Results obtained from (R) test with pore-pressure.

⁴ Results obtained from (Q) test.

that distinguish the material properties for each soil layer (region) are the soil's unit weight, moisture content, and strength values, such as phi angle (angle of internal friction) and cohesive strength. In order to simplify the geometry, the foundation layers were combined into one layer and strength parameters were input using the cohesion spatial function option in SLOPE/W. The cohesion spatial function draws the contours based on points of known shear strength (s_u), derived from the CPT soundings collected in 2011. The unit weights of soil values (χ) used for the analyses are included in Table 6. Detailed cohesion spatial function shear strength points, related to depth, used in SLOPE/W for cross-sections 1 and 2 are represented in Attachment 1, Table 11 thru Table 24. Conservative minimum values were assumed in areas where data was not available. The shear strengths for both cross-sections were taken from SPT and CPT soundings. As a result, the model used to evaluate Eagle Island used 12 material layers.

		Unit Weight	Phi Angle	Cohesion
No.	Material	ɣ (pcf)	ф (deg)	C (psf)
1	Sandy Clayey Silt	100	28	
2	Dredge Fill	80	150	
3	Silt Clay	Table 6		Function of the CPT Data
4	Foundation 1	110	28	
5	Foundation 2	125	32	
6	Marsh	85		150
7	River Muck	85		80
8	Dredge Fill Foundation	90		300
9	Silty Sand	95	28	
10	Elastic Silt	90		200
11	Poorly Graded Sand	115	30	
12	Foundation 3	120	35	

Table 5. Material properties for soils used in analysis.

Table 6. Unit weight (y) of soils values used in this analysis.

C (psi)	ф (deg)	γ (pcf)
0	28	100
0	32	125
100	0	75
150	0	80
200	0	86
250	0	86
280	0	88
300	0	90
350	0	90
400	0	95
500	0	100
550	0	100
600	0	105
700	0	110
800	0	110
1000	0	110

Wilmington Harbor Improvements Project | 17 Appendix C - Geotechnical Engineering |

Wilmington Harbor Improvements Project | 18 Appendix C - Geotechnical Engineering |

Figure 12. Closer view of the geometry of soil layers for cross-section 1.

Figure 13. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 1, existing condition, using known points of strength.

Figure 15. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 1, future with project condition, using known points of strength.

Model geometry for cross-section 2 is shown in Figure 16, while the cohesion spatial function is shown in Figure 18.

Figure 17. Geometry of soil layers for cross-section 2, existing condition.

Wilmington Harbor Improvements Project 20 Appendix C - Geotechnical Engineering

400 450 500 550 1000 1050 Figure 18. The cohesion spatial function for the Silt/Clay (cohesion) layer in the generalized model for cross-section 2, existing condition, using known points of strength.

3.1.3.4 Seepage Analysis Results

The seepage analyses, performed using SEEP/W (Version 8.0.2.5675), were used to determine the piezometric surfaces within the soils of the dikes when the water level is increased within Cells 2 and 3 at Eagle Island. The SEEP/W analyses evaluated irregular saturated/unsaturated conditions as well as the embankment stability as the pore water pressure conditions change. SEEP/W is a part of the GeoStudio 2012 package and is a 2-dimensional finite element program. The seepage analyses included in this report are steady state analyses and the sections analyzed are located perpendicular to the dike alignment.

The pore water pressure (PWP) and piezometric lines used in the stability analyses are at 37 feet NAVD88 for the interior water surface level and 4 feet NAVD88 for the river water surface level. The resulting pore water pressures at cross-section 1 and 2 are shown in Figure 21 and Figure 23, respectively.

Figure 21. Pore-water-pressure at cross-section 1 from SEEP/W for existing condition.

3.1.3.5 Stability Analysis Results

The slope stability analysis of Eagle Island was performed to ensure that the integrity of the dike is not affected by Turning Basin widening. The analyses outlined in this report were analyzed using SLOPE/W from the GeoStudio 2012 package. SLOPE/W is a software program that computes factors of safety through limit equilibrium computations. SLOPE/W offers several methods to compute factors of safety.

The assumptions used for the analyses are as follows:

- The existing dikes for Cell 2 and Cell 3 were designed in 2002 to elevation 39 (NAVD88) using CPT data collected in 1999. This analysis was performed using the UTEXAS series computer programs by a Wilmington District geotechnical engineer.
- The data collected in 2011 was used for the stability analysis used in this Study for crosssection 1 and cross-section 2. The results for the stability analysis included in this Study differ from the results of the stability analysis performed in 2002 because two different subsurface data sets were used and was completed using the GeoSlope computer program.
- Engineered geotextile is present in cross-section 1 at elevation 19 feet NAVD88 with a bond skin friction (F/Area) of 1400 psf and fabric capacity of 9300 lbs.
- Engineered geotextile is present in cross-section 2 at elevation 16 feet NAVD88 with a bond skin friction (F/Area) of 1400 psf and fabric capacity of 9300 lbs.
- Cross-section geometry was developed using topographic and planimetric survey collected in November 2012.
- Exterior (Cape Fear River side) slope of 4:1
- Interior (dredge fill retention side) slope of 3:1.
- Existing condition for cross-section 1 and cross-section 2 were modeled.
- Future with project condition was modeled for cross-section 1 and cross-section 2.
 - Cross-section 1: 451 linear feet of material was removed from the existing toe to depict Turning Basin widening.
 - Cross-section 2: 408 linear feet of material was removed from the existing toe to depict Turning Basin widening.
- The CPT soundings and SPT borings collected by Terracon (2011) were used to develop the cross-section soil layers and strength properties for subsurface stability analyses.
- The shear strength values input into the spatial function option in SLOPE/W for the exterior toe of the dike, to the intersection of the river at each cross-section, were assumed values obtained by the CPT soundings at hole C of the corresponding transect.
- The dredge fill has an undrained shear strength (cohesion) of 150 psf and a unit weight of 80 pcf.
- Conservative values for the river mud flats (River Muck layer) were used, Cohesion of 80 psf and a unit weight of 85 pcf.
- Piezometric surfaces for analyses were generated using SEEP/W.

The stability analyses were performed in accordance with the requirements of EM 1110-2-1902, Slope Stability and EM 1110-2-5027, Confined Disposal of Dredged Material. As required in the Engineer Manuals, the safety factors against global stability of the dike sections were computed

using Spencer's method. The stability of the dike sections or 'slip surfaces', were input into SLOPE/W using the "Entry and Exit" and "Fully Specified" functions to find the lowest factor of safety.

The entry and exit function allows the user to specify a range of points where the slip surface might start and another range of points where the slip surface might exit (see the red lines on the slope surface of Figure 25. During the slip surface analysis, each entry point is connected with each exit point. For each set of entry and exit points, multiple slip surfaces are drawn according to different radius points, which are generated in SLOPE/W. The results are then reviewed and analyses may be re-run according to whether the critical slip surface is within the limits of the entry and exit points. The position of the critical slip surface is affected by the soil strength properties as discussed in *3.1.3.1 Field and Laboratory Test Results*. The following cross-sections each show the lowest computed factor of safety with an addition ten slip surfaces (gray lines) modeled in SLOPE/W.

Figure 25. Entry and Exit method showing the factor of safety for a left to right circular slip surface during 'existing' conditions at cross-section 1.

Figure 26. Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'with project' conditions at cross-section 1.

Figure 27. Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'existing conditions' at cross-section 2.

Figure 28. Entry/Exit method showing the factor of safety for a left to right circular slip surface during 'with project' conditions at cross-section 2.

The "Fully Specified" slip surfaces are slip surfaces made up of a series of line segments. Each slip surface must be specified individually by defining the points that make up the slip surface line or by drawing them on the screen with the "Draw Slip Surface: Fully Specified" command. The fully specified slip surfaces for both cross-sections were drawn based on low cohesion values in the embankment and foundation layers. The following cross-sections each show the lowest computed factor of safety with additional slip surfaces (gray lines) modeled in SLOPE/W.

Wilmington Harbor Improvements Project 26 Appendix C - Geotechnical Engineering

Figure 30. Fully Specified method showing the factor of safety for a left to right slip surface during 'with project' conditions at cross-section 1.

project' conditions at cross-section 2.

The Spencer's method factor of safety is determined at the point where the two curves cross in the Factor of Safety vs Lambda (λ) plot. At this point, the factor of safety satisfies both moment and force equilibrium. In this case, the moment equilibrium is completely independent of the interslice shear forces, as indicated by the horizontal moment equilibrium curve. The force equilibrium, however, is dependent on the interslice shear forces. The Factor of Safety vs Lambda (λ) plot for the lowest factors of safety using the "Entry and Exit" and "Fully Specified" methods for cross-sections 1 and 2, existing condition and with project condition, can be seen in Figure 33 thru Figure 40

Figure 33. Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 1 using the Entry and Exit Method.

Figure 34. Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 1 using the Fully Specified Method.

Figure 35. Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 1 using the Entry and Exit Method.

Figure 36. Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 1 using the Fully Specified Method.

Figure 37. Factor of Safety vs Lambda (λ) plot for with 'existing' condition at cross-section 2 using the Entry and Exit Method.

Figure 38. Factor of Safety vs Lambda (λ) plot for 'existing' condition at cross-section 2 using the Fully Specified Method.

Figure 39. Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 2 using the Entry and Exit Method.

Figure 40. Factor of Safety vs Lambda (λ) plot for 'with project' condition at cross-section 2 using the Fully Specified Method.
Table 7 shows the summary of the factors of safety for the analyses performed at cross-sections 1 and 2 using the Spencer's method using SLOPE/W.

Cross-		Factor of	Slip Surface
Section	Condition	Safety	Method
1	Existing	2.06	Entry and Exit
1	Existing	0.81	Fully Specified
	Future with		
1	Project	2.06	Entry and Exit
	Future with		
1	Project	0.81	Fully Specified
2	Existing	1.11	Entry and Exit
2	Existing	1.07	Fully Specified
	Future with		
2	Project	1.11	Entry and Exit
	Future with		
2	Project	1.05	Fully Specified

Table 7. Slope Stability results showing computed factors of safety for cross-sections 1 and 2.

The slope stability analysis of Eagle Island was performed to determine the stability of the east side dikes of Cell 2 and Cell 3 if materials from near the toe of the original dikes were removed, due to the widening of the Turning Basin. Previously, the dike was designed to elevation 39 (NAVD88) with a factor of safety of 1.2. The result of the stability analysis for this Study shows that a factor of safety is less than the desired 1.2. The analysis in this Study has a lower factor of safety because of updated subsurface information from the 1999 investigation. Although the dike was shown to be stable in previous analyses, it is believed that the low factor of safety computed using GeoStudio shows that a modification to the area around the dike would have a greater chance of affecting the stability of the dike structure. The dike is believed to be safe as it is presently, but because the factor of safety is less than 1.2, the conservative nature built into the factor of safety is not within the desired "good engineering judgment". The slope stability analysis confirmed that the turning basin cannot be lengthened into Eagle Island and the area cut into the dikes will not maintain a factor of safety greater than 1.2, which is considered acceptable based on the slope stability criteria in EM 1110-2-5027 for dike stability to elevation 48 NAVD88.

Subsurface investigations will be performed to collect additional data not obtained in the previous investigations. This investigations and updated stability analysis will be done in 2014 to verify the results of the previous analyses. Additionally, the dikes should be raised no more than 3 to 5 feet during each stage of construction.

3.1.3.6 Dredge Disposal Options for the Turning Basin Widening

The material dredged from the Turning Basin will more than likely be a slurry of mud, sand, gravel, rock, wood and organic material. In 2010, the estimated total dredging quantity of material in the Turning Basin was 1,530,000 cubic yards with approximately 154,000 cubic yards of that material being rock. Because of the heterogeneous-nature of the material, no known

economic use is available; therefore it is assumed that disposal operations will be based upon closest proximity to dredging operations. Eagle Island is the most likely disposal site based upon the logistics of haul distance. If Eagle Island were not available, the next most likely course of action would be to barge disposal material downriver to the Ocean Dredged Material Disposal Site (ODMDS) located near the entrance of the harbor channel. The disposal material is considered to be unsuitable for use in fish estuaries or for use as fill for the erosional scour at the Cape Fear River Lock and Dam #2 because of the amount of fines and other undesirable material present in the slurry.

3.2 Battery Island Turn

3.2.1 Data Acquisition

On 11 and 12 July 2012 and 18 February 2013, subsurface investigations surrounding the Battery Island turn were performed using the USACE vessel SNELL and an Alpine model 270 Vibracore. The vibracore machine is a self-contained pneumatic powered vibratory corer that has a 20 ft metal barrel into which a clear Lexan 3 7/8 in. diameter liner (vibracore tube) is inserted for collecting sediment. The liner is held in place by a metal shoe that is screwed onto both the liner and metal barrel. A cutting edge is included in the metal shoe. The vibracore machine uses a pneumatic powered vibrator mounted at the uppermost end of the vibracore barrel. The machine is mounted in a stand that is lowered to the river floor by a crane. When the vibracore is activated the vibracore barrel vibrates into the unconsolidated sediment and a disturbed sediment sample is retained inside the liner. In general, vibratory drilling collects up to 20 ft of sediment unless refusal is encountered. Refusal occurs when the penetration rate of the vibracore is less than 0.01 ft/s. The survey-grade HYPACK navigation system on the USACE Vessel SNELL is used to determine the boring locations. The sea floor bottom elevation is determined by measuring water depth from the water line to the subsurface, with water line datum as 0.0 ft. The recorded water depth is then corrected to MLLW using NOAA-verified tidal data for the date and time for which the vibracore was drilled.

Once the vibracore sampling was complete, the tubes were taken to the Wilmington District, Snow's Cut field facility, where they were cut open, logged, and field visually classified in accordance with the Unified Soils Classification System (USCS). Samples were collected from each tube at approximately 2 foot intervals or at each visible change of material. The retained samples were stored in jars and sent to a USACE validated soils laboratory for particle-size analysis. A particle-size analysis was conducted on each sample in accordance with ASTM Standard D 422, "Standard Test Method for Particle-Size Analysis of Soils" using the following U.S. Standard sieve sizes: No. 4, No. 18, No. 35, No. 60, No. 80, No. 120, No. 200, and No. 230 sieve. Since the vibracore samples are disturbed samples, strength properties cannot be determined from the samples and are therefore were not performed. In addition to the particle-size analysis, all the samples were classified using visual engineering soil classification in accordance with ASTM Standard D 2487, as required in Engineering Manual 1110-1-1804 and a visual estimation of the percent shell content was performed.

3.2.1.1 Location of Samples and Cross-Sections.

Five subsurface vibracore soil samples were collected during the July 2012 mission, east of the Wilmington Harbor channel at the Battery Island and Lower Swash range intersection. These samples are numbered: WH12-V-16, WH12-V-17, WH12-V-18, WH12-V-19, and WH12-V-20.

Six supplementary vibracore samples were required, due to the decision to evaluate additional alternative widening measures discussed by the PDT. These samples were collected on the west side of the Wilmington Harbor channel at the Battery Island and Lower Swash range, for a distance of 0.8 miles (4250 feet) with spacing more than 700 feet. The vibracores collected on 18 February 2013, are numbered WH13-V-01, WH13-V-02, WH13-V-03, WH13-V-04, WH13-V-05, and WH13-V-06. Figure 41 shows the locations of each vibracore.

Figure 41. Vibracore locations performed in 2012 at the Battery Island turn.

A graphical representation of the geologic profiles for the samples collected at the Battery Island turn is show in Figure 42 and Figure 43. The intent of each profile was to verify the thickness of potentially useful strata utilizing the soils data. Each profile conveys the following information; river bottom, bottom of boring, graphical representation of the visually classified soils, and the

laboratory soil classification in parenthesis. Interpretative weight should be given to laboratory classification over field visual classification, however, the laboratory data does not take into consideration discrete stratigraphic variations such as silt-filled lenses that raise the silt content of composited sandy soils. Therefore, these models are best approximations of the *in-situ* soil conditions.

Figure 42. Geologic cross-section A-A', Battery Island Turn.

Figure 43. 2-D Geologic cross-section in Battery Island Turn for line 1-1'.

3.2.1.2 Material Properties

A particle grain size analysis was performed for each sample documented on the geologic crosssection logs. The particle grain size characteristics of the samples were used to develop a weighted composite grain size distribution that is representative of the material in each area. To determine the composite characteristics for the Battery Island turn excavation area, each core was weighted based upon the sampled strata thickness of material in the core and then the sum weighted characteristics from the cores are divided by the total strata thickness above the excavation or dredge elevation. Included in the analysis was an estimate of the amount of finegrained sediments in each core that is finer than the #200 sieve (0.074 mm). The Wilmington District policy with regard to the percentage of fine-grained sediments is that in excavation areas where more than 10% pass the #200 sieve, materials are generally considered to be incompatible for beneficial placement on the beach due to potential problems with increased water turbidity and siltation during placement.

Wilmington Harbor Improvements Project 36 Appendix C - Geotechnical Engineering

Between the Wilmington Harbor channel at the Battery Island and Lower Swash ranges intersection, and Battery Island, samples WH12-V-16, WH12-V-17, WH12-V-18, WH12-V-19, and WH12-V-20 were acquired for potential disposal options should the realignment of the Battery Island Turn be constructed eastward of the existing channel. These samples averaged a recovery length of 8.94 feet before hitting refusal between elevations -45.2' to -51.0' (MLLW). The location of refusal is the assumed 'top-of-rock elevation'. This 'top-of-rock elevation' is below the authorized depth for the channel (-44' MLLW) and the 2 feet required allowable overdepth. If material was to be removed from this location, the presence of rock is possible but not expected. A grain size compatibility analysis was run for this area from laboratory results for the "Typical Dredging Section" elevation, -46' MLLW. The weighted percent fines passing the #200 sieve (0.075mm) is 7.44%, additionally, the weighted percent passing the #4 sieve (4.75mm) is 86.01%. Percent fines passing the #200 sieve for the each hole sampled ranged from 1.32% to 20.01%. The higher silt content samples were mainly found in the samples collected 400 feet north and east of the Lower Swash Range and Battery Island Range intersection.

Hole	Thickness (ft)	% Passing #4	% Passing #200	Wtd % Passing #4	Wtd % Passing #200
WH12-V-16	5.6	91.27	20.01	15.77	3.46
WH12-V-17	8	88.54	1.32	21.86	0.33
WH12-V-18	5.5	96.43	12.20	16.37	2.07
WH12-V-19	8.9	78.15	4.34	21.47	1.19
WH12-V-20	4.4	77.63	2.9	10.54	0.39
Total =	32.4		Total	86.01	7.44

Table 8. Results from the 2012 USACE vibracore borings for the Battery Island turn.

Field classification of vibracore WH12-V-16 indicated poorly graded silty sand (SP) between - 40.4' and -41.4' (MLLW), poorly graded silty sand with clay and trace shells (SP-SC) between - 41.4' and -43.2' (MLLW), clayey sand with shells (SC) between -43.2' and -44.5' (MLLW), and course grained silty sand with some gravels (ML) to refusal depth at -51.0' (MLLW). Four samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples are: SM, SM, SC, and SW-SM.

Field classification of vibracore WH12-V-17 indicated well graded sand with some shells (SW) between -38.0' and -44.1' (MLLW), and poorly graded silty sand (SP) to refusal depth at -46.4' (MLLW). Two samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples are: SP and SP.

Field classification of vibracore WH12-V-18 indicated clayey sand with gravel (SC) between - 40.5' and -41.9' (MLLW), and well graded sandy gravel to refusal depth at -47.9' (MLLW). Two samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples are: SC and GW-GM.

Field classification of vibracore WH12-V-19 indicated well graded sand with little shell (SW) between -36.3' and -40.8' (MLLW), poorly graded sand (SP) between elevations -40.8' and -41.7' (MLLW), well graded gravel (GW) between elevations -41.7' and -44.3' (MLLW), and poorly graded gravel (GP) to refusal depth at -45.2' (MLLW). Four samples were lab classified

and analyzed for the same elevation ranges. The lab classification results from jar samples are: SW, SP, GW-GM, and GW-GM.

Field classification of vibracore WH12-V-20 indicated well graded sand with little shell (SW) between -41.6' and -44.4' (MLLW), poorly graded sand (SP) between elevations -44.4' and -50.4' (MLLW), and well graded gravel (GP) to refusal depth at -51.0' (MLLW). Three samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples are: SW, SP, and SW-SM.

The area east of the USACE DA 277 and between the Wilmington Harbor channel at the Battery Island Range and Lower Swash Range intersection and south of the town of Southport, NC, vibracore samples WH13-V-01, WH13-V-02, WH13-V-03, WH13-V-04, WH13-V-05, and WH13-V-06 were acquired for sediment analysis for potential disposal options should the realignment of the Battery Island Turn be constructed westward of the existing channel. These samples averaged a recovery length of 12.55 feet before hitting refusal between elevations -35.3' to -52.4' (MLLW). The location of refusal is the assumed 'top-of-rock elevation'. This 'top-ofrock elevation' is found above and below the authorized depth for the channel. If material was to be removed from this location, the presence of rock is possible. A compatibility analysis was run for this area from laboratory results for the authorized depth of -44' MLLW, and the 2 feet of required allowable overdepth. Where vibracore did not penetrate to at least -46' MLLW, the compatibility analysis was only ran using material collected. The weighted percent fines passing the #200 sieve (0.075mm) is 23.04%, additionally, the weighted percent passing the #4 sieve (4.75mm) is 97.81%. Percent fines passing the #200 sieve for the each hole sampled ranged from 1.45% to 40.45%. The higher silt content samples were mainly found in the vibracores collected to the west of the Lower Swash Range and Battery Island Range intersection.

Hole	Thickness (ft)	% Passing #4	% Passing #200	Wtd % Passing #4	Wtd % Passing #200
WH13-V-01	3.6	94.68	8.81	4.70	0.44
WH13-V-02	6.0	92.80	10.20	7.86	0.84
WH13-V-03	6.6	96.05	11.27	8.74	1.03
WH13-V-04	18.3	99.94	40.45	25.23	10.21
WH13-V-05	21.0	99.36	35.17	28.78	10.19
WH13-V-06	17.0	96.71	1.45	22.68	0.34
Total	72.5		Total	97.81	23.04

Table 9. Results from the 2013 USACE vibracore borings for the Battery Island turn.

Field classification of vibracore WH13-V-01 indicated poorly graded silty sand (SP) between - 36.4' and -37.9' (MLLW), gravel with rock fragments (GP) between elevations -37.9' and -38.2' (MLLW), course sand (SP) between elevations -37.9' and -38.2' (MLLW), gravel with rock fragments (GP) between elevations -39.0' and -39.2' (MLLW), and course sand (SP) to refusal depth at -40.0' MLLW). Two samples were lab classified and analyzed for elevation ranges - 36.4' to -37.9' (MLLW) and -38.2' to -40.0' (MLLW). The lab classification results from jar samples are: SM and SW, respectively.

Field classification of vibracore WH13-V-02 indicated poorly graded silty sand (SP) for the whole vibracore sample. The ocean bottom was at elevation 40.0' (MLLW) and refusal depth was -46.0' (MLLW). One sample was lab classified and analyzed. The lab classification results from the jar sample indicated an SM-SM soil.

Field classification of vibracore WH13-V-03 indicated poorly graded sand with some shell (SP) between elevations -39.4' and -43.6' (MLLW), poorly graded sand with silt (SP-SM) between elevations -43.6' and -50.8' (MLLW), and well graded gravel with silt (GW-GM) to refusal elevation -52.4' (MLLW). Three samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples are: SW-SM, SM, and SP-SM.

Field classification of vibracore WH13-V-04 indicated poorly graded sand with some shell (SP) between elevations -26.4' and -34.4' (MLLW), and poorly graded fine sand with clay (SP-SC) to refusal at elevation -44.7' (MLLW). Two samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples indicated the soils to be SM and ML.

Field classification of vibracore WH13-V-05 indicated well graded sand with silt and trace of shell (SW-SM) between elevations -17.9' and -22.1' (MLLW), poorly graded sand with silt (SP-SM) between elevations -22.1' and -24.6' (MLLW), clayey sand (SC) between elevations -24.6' and '29.5' (MLLW), well graded sand with clay, little shell (SW-SC) between elevations -29.5' and -31.7' (MLLW), and well graded sand with few shells to refusal at elevation -35.3' (MLLW). Five samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples indicated the soils to be SM, SM, ML, ML, and SP-SM, respectively.

Field classification of vibracore WH13-V-06 indicated fine, poorly graded sand with shell (SP) between elevations -17.9' and -26.2' (MLLW), fine to medium, well graded sand with few shell (SW) between elevations -26.2' and -31.4' (MLLW), and poorly graded sand (SP) to refusal at elevation 37.9' (MLLW). Four samples were lab classified and analyzed for the same elevation ranges. The lab classification results from jar samples indicated the soils all to be SP.

3.2.1.3 Additional Geotechnical Investigation Data

Additional vibracores and washprobes are required to the east of Battery Island Range and Southport Channel. No more than 1 day of additional fieldwork is required. Approximately 10 vibracores and 20 washprobes are recommended for this area.

3.2.1.4 Dredge Disposal Options for the Battery Island Turn

The area immediately surrounding the sampled vibracore hole locations within the proposed channel realignment is not beach compatible or the vibracore refusal depth was above the authorized depth of the channel. This is because the required 10% passing the #200 sieve is not met. Therefore, disposal of material in the proposed channel alignment should go to the Wilmington District's Offshore Dredged Material Disposal Site (ODMDS).

3.3 Entrance Channel near Bald Head Island

3.3.1 Data Acquisition

The same methods used to collect subsurface soil data and analyze materials at the Battery Island turn, were used for the vibracore samples collected at the Entrance Channel near Bald Head Island.

3.3.1.1 Location of Samples and Cross-Sections.

Fifteen subsurface vibracore soil samples were collected during the July 2012 mission. These samples are WH12-V-1 through WH12-V-15. Figure 44 shows the locations of each vibracore. Only vibracores WH12-V-1, WH12-V-2, WH12-V-3, WH12-V-5, WH12-V-9, WH12-V-10, and WH12-V-14 are within the proposed channel, and adjacent to the existing navigation channel.

Figure 44. Vibracore locations performed in 2012 at the Entrance Channel near Bald Head Island.

A graphical representation of the Geologic profiles for these samples collected at the Entrance Channel near Bald Head Island is shown in Figure 45 and Figure 46. The intent of each profile was to verify the thickness of potentially useful strata utilizing the soils data. Each profile conveys the following information; river bottom, bottom of boring, graphical representation of the visually classified soils, and the laboratory soil classification in parenthesis. Interpretative weight should be given to laboratory classification over field visual classification, however, the laboratory data does not take into consideration discrete stratigraphic variations such as silt-filled lenses that raise the silt content of composited sandy soils. Therefore, these models are best approximations of the *in-situ* soil conditions.

Wilmington Harbor Improvements Project 41 Appendix C - Geotechnical Engineering

Figure 45. 2-D Geologic cross-section in Entrance Channel near Bald Head Island for line B-B'.

Figure 46. 2-D Geologic cross-section in Entrance Channel near Bald Head Island for line C-C'.

3.3.1.2 Material Properties

A particle size analysis was performed for each vibracore documented within the proposed channel for the authorized depth of -44' (MLLW), plus 2 feet of required allowable overdepth. Where vibracore did not penetrate to at least -46' (MLLW), the compatibility analysis was only ran using material collected. The particle/grain size characteristics of the vibracore samples were used to develop a weighted composite grain size distribution that is representative of the material in each area. To determine the composite characteristics for the proposed Entrance Channel excavation area, each core was weighted based upon the sampled strata thickness of material in the core and then the sum weighted characteristics from the cores are divided by the total strata thickness in the excavation or channel prism bottom. Included in the analysis is an estimate of the amount of fine-grained sediments in each core that is finer than the #200 sieve (0.074 mm). The Wilmington District policy with regard to the percentage of fine-grained sediments is that in excavated areas where more than 10% passes the #200 sieve, these materials are generally considered to be incompatible for beneficial placement on the beach due to potential problems with increased turbidity and siltation during placement.

A total of fifteen vibracores were collected adjacent to the existing Entrance Channel near Bald Head Island resulting in sixty sediment samples in July 2012. One sample (2%) contained well-graded sand with silt (SW-SM) between elevations -44 feet and -48.5 feet MLLW, one sample (2%) contained fat clay (CH) between elevations -41.4 feet and -49.6 feet MLLW, three samples (5%) contained well-graded sand (SW) between elevations -35.6 feet and -66.8 feet MLLW, four samples (7%) contained elastic silt (MH) between elevations -39.8 feet and -61 feet MLLW, four samples (7%) contained poorly graded sand with silt (SP-SM) between elevations -54 feet and -59 feet MLLW, eight samples (13%) contained poorly graded sand (SP) between elevations -32.9 feet and -54.9 feet MLLW, thirteen samples (21%) contained lean clay between elevations -38 feet and -57.5 feet MLLW, and seventeen samples (28%) contained clayey sand (SC) between elevations -36.1 feet and -59.5 feet MLLW.

Shell content (CaCO3) ranged from 0.0 to 49.2 percent, and averaged 7.26 percent for all samples. Composite shell content ranged from 0.11 to 21.45 percent, and averaged 6.40 percent for all samples. Shell content varied from fine shell hash (sand-sized shell fragments) to very coarse, large shells (e.g., oyster, scallop, etc). See Table 10 for the results from the 2012 USACE vibracore borings at Entrance Channel near Bald Head Island.

From the fifteen vibracores collected in 2012, six are within the proposed channel. Using the laboratory data from the six vibracores (11 total samples), the compatibility analysis indicated weighted percent fines passing the #200 sieve is 45.6%, additionally, the weighted percent passing the #4 sieve is 99.04%. Percent fines passing the #200 sieve for the holes sampled, within the proposed channel, ranged from 2.48% to 72.23%. See Table 10 for a summary of the samples analyzed.

Hole	Thickness (ft)	% Passing #4	% Passing #200	Wtd % Passing #4	Wtd % Passing #200
WH12-V-1	6.3	99.11	65.95	16.92	11.26
WH12-V-2	6.5	97.98	64.86	17.26	11.43
WH12-V-5	4.5	99.69	62.28	12.16	7.59
WH12-V-9	6.8	99.43	34.37	18.32	6.33
WH12-V-10	4.3	98.91	72.23	11.53	8.42
WH12-V-14	8.5	99.2	2.48	22.85	0.57
Total	36.9		Total	99.04	45.6

Table 10. Results from the 2012 USACE vibracore borings for the Entrance Channel near Bald Head Island.

3.3.1.3 Additional Geotechnical Investigation Data

No additional vibracore data is required at the Entrance Channel near Bald Head Island.

3.3.1.4 Dredge Disposal Options for the Entrance Channel near Bald Head Island

Historically, material that has accumulated in the existing Entrance Channel – Range 1 has been beach compatible and it is assumed to be so in the future. This material can be placed on the beach during future dredge cycles as long as there is less than 10% fines passing the #200 (0.075 mm) sieve. The material sampled within the proposed Entrance Channel near Bald Head Island is considered "virgin" material, and should not be considered for beach disposal, but rather the designated ODMDS. The weighted percent fines of the virgin material was calculated to be 45.60%% (much greater than 10% passing the #200 sieve) and the visual percent shell is approximately 6.5%. Therefore, when the virgin material is dredged , it is recommend the material disposal shall be the ODMDS.

4.0 Conclusions and Recommendations

In conclusion, the slope stability analysis confirmed that the proposed Turning Basin should not be lengthened into Eagle Island because the area to be excavated into the dikes will not maintain a factor of safety greater than 1.2. Due to such an inadequate factor of safety, it is recommended that the plan to widen the Turning Basin be abandoned at this time.

For the Battery Island Turn, the area immediately surrounding the sampled vibracore hole locations are not beach compatible or the vibracore refusal depth was above the authorized depth of the channel. This is because the required 10% passing the #200 sieve is not met. Therefore, material disposal should be the ODMDS for the realignment of Battery Island turn.

The virgin material sampled outside the Entrance Channel near Bald Head Island should not be considered for beach disposal. The weighted percent fines of 45.60% is much greater than 10% passing the #200 sieve and the visual percent shell is approximately 6.5%. Material disposal for the proposed channel alignment should to the ODMDS.

The following items are recommended for future activities:

Turning Basin Realignment:

- Continue to perform analysis of the dikes and evaluate the change in foundation conditions.
- Construct any dike raises over 5 feet by staged construction.
- Inspect dikes in Cell 2 and Cell 3 for cracking, settlement, and possible seepage and wet areas during construction activates.
- Check critical Eagle Island stability sections with UTEXAS4.

Battery Island Turn:

• Additional vibracores and washprobes are required to the east of Battery Island Range and Southport Channel. Approximately 10 vibracores and 20 washprobes are recommended.

Entrance Channel near Bald Head:

• None.

5.0 References

Soller, D.R., 1988, Geology and Tectonic History of the Lower Cape Fear River Valley, Southeastern North Carolina, USGS Professional Paper 1466A, Denver, CO.

Reconnaissance Study 905(b) Analysis, Wilmington Harbor Navigation Improvements (April 2011)

Geotechnical Report Eagle Island Dredge Disposal Area Brunswick County, North Carolina (May 2012)

- Tolen, P.G., Gilbert, P.E., Zapata Engineering, P.A., 1999, Final Report River Segment Geotechnical Engineering Analysis for Wilmington Harbor Deeping Project, Brunswick and New Hanover Counties, North Carolina, Vol. I, pages 25 and 60.
- Harris, P.G., 2000, Evaluation, Analyses and Delineation of the Geology, Wilmington Harbor, Brunswick and New Hanover Counties, North Carolina, pages 7, 27-29, 34, 35,38, and 39.
- US Army Corps of Engineers, Wilmington District, 1996, Final Feasibility Report and Environmental Impact Statement on Improvement of Navigation, Cape Fear – Northeast Cape Fear Rivers Comprehensive Study, Wilmington, North Carolina, Volume II, pages G-9, G-11, and G-13.
- Limber, P. and Warren, J, North Carolina Division of Coastal Management, Raleigh, NC, Information Document CRC 06-01, Development of Sediment Criteria Regulations for Beach Fill Projects along North Carolina's Atlantic Coast

EM 1110-2-1902 Slope Stability (Oct. 2003)

EM 1110-1-1804 Engineering and Design - Geotechnical Investigations, Chapter 7 (January 2001)

ASTM D1140 – Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75- μ m) Sieve

ASTM D422 - Standard Test Method for Particle-Size Analysis of Soils

ASTM D4318 – 10 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D2216 – 10 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

ASTM D2974 – 07a Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils

ASTM D4767 – 11 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils

ASTM D2850 – 03a(2007) Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils

ASTM D2435 / D2435M – 11 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading

Wilmington Harbor Improvements Project | 46 Appendix C - Geotechnical Engineering |

ASTM D2487 - 11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

Wilmington Harbor Improvements Project | 1 Appendix C - Geotechnical Engineering |

Attachment A: SPT & CPT Boring Logs for Eagle Island

Wilmington Harbor Improvements Project 2 Appendix C - Geotechnical Engineering

DRULING LOG DMSM INSTALATION MSTALATION State Automation 1 PROJECT TROJECT Grade Disposal Area 102 State Plans - MAD A3 WAND08 2 NOE MARKER LOATION COCREMENTES 11 MARRATIMENT ESTIMATION OF DERL 74.516 Drag BR 2 NOE MARKER LOATION COCREMENTES 11 MARRATIMENT ESTIMATION OF DERL 74.5176 Drag BR 2 NOE MARKER LOATION COCREMENTES 11 MARRATIMENT ESTIMATION OF DERL 10005174850 3 DRELMARGEN 12 TOTAL SMEET CORE BOXES 0 1 4 MUE OF DRELE 13 TOTAL MARRET CORE BOXES 0 1 10 MORTOR MARTINE AND READOWNANTE SEE Remarks 1 10 MORTOR 10 TOTAL MARRET CORE BOXES 0 1 10 MORTOR MARTINE AND READOWNANTE SEE Remarks 1 101/01/1 10 MORTOR DOX 11 TOTAL MARRET CORE BOXES 101/01/1 101/01/1 10 MORTOR DOX 11 TOTAL MARRET CORE BOXES 0 1 10 DETTOR DOX 11 TOTAL MARRET CORE BOXES 101/01/1 101/01/1 10 TOTAL MARRET CORE BOXES 0 100 100<							Borin	g D€	esignation EI-2011-SPT-4	4		•
I. PROJECT DORDONTAL WITTOUL Eagle Island Dredge Disposal Area 0.00000MHz Envire OF EN NAVD83 NAVD83 I CLE NAMBER LOCATION COORDINATES 11. MARKATLIFER SEGENATION OF DREIL NAVD83 ELVE INAMER LOCATION COORDINATES 11. MARKATLIFER SEGENATION OF DREIL NAVD83 ELVE INAMER LOCATION COORDINATES 11. MARKATLIFER SEGENATION OF DREIL NAVD83 THRONG CONSULTANT, IC NAVD83 NAVD83 NAVD83 MARKATLIFER SEGENATION OF DREIL 13. TOTAL NUMBER ONE ROUSE 0 0. STUDEED 2. NUM. DUGINS 14. ELEVATION NOROUND WATTR See Remarkts 10/10/11 COMPARISON S INFECTION OF BORING EECHTICAL 16. DATE BORING INVA 10/10/11 COMPARISON S INFECTION OF BORING EECHTICAL 16. DATE BORING SILT TOTAL OBER CONSERVER OB ONDON NA C ITAL DET MORDONE OF BORING 10. DATE DITAL DET MORDONE ON ALL PROFEROR NA 10/10/11 COMPARISON C ITAL DET MORDONE OF BORING 66' 100 SS-1 10/10/11 COMPARISON I ITAL DET MORDONE DO NO OF BORING	DF	RILLIN	GL	OG	South Atlantic	Wilr	LATION ningtor	n Dist	trict OF	ет 1 2 sне	EETS	
Legen balance industry endowed in the second program in the secon	1. PRO. Eac	JECT	d Dr	adaa D	isnosal Area	9. COO Stat		SYST	EM HORIZONTAL VER		3	1
2: HOLE NUMBER DITUMENTE DESIGNATION OF DRULL 1: MAURATUREY DESIGNATION OF DRULL Image: Constraints of the second seco	Eag	ne isian	u Di	euge D	ispusal Alea	10. SIZE	AND TY	PEOF	BIT 2-15/16 Drag Bit		, 	1
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	2. HOLE FI-2		? РТ-4	LO	CATION COORDINATES	11. MAN Dier	UFACTU	RER'S	DESIGNATION OF DRILL			1
Lerradon Consultants, Inic 45 2 A INME OF DRULER 13. TOTAL NUMBER CORE BOXES 0 W. Duggins Dep Provid 15. DATE BORNO 15. DATE BORNO 15. DATE BORNO 15. DATE BORNO 10/10/11 10/10/11 10/10/11 B CHARDERS OF CVERRUPCIAL	3. DRILL	LING AGE	NCY			12. TOT	AL SAMP	LES	DISTURBED UNDIS	TURBED		1
W. Duggins Decomposition Decomposition Configuration Configuration <thconfiguration< th=""> Configurati</thconfiguration<>	4. NAME	E OF DRIL	LER	ultants,	Inc	13 TOT		ER CO	BEBOXES 0	2		ł
Bit Market Mar	W. I	Duggin	S			14. ELE	VATION	GROUN	ND WATER See Remarks			ł
A. THOONESS OF OVERBURDEN 19. LELVATION TOR OF BORNO 33" 7. DEPTH DRULED INTO ROCK 17. TOTAL DEPTH OF BORNO N/A 8. TOTAL DEPTH OF BORNO 68" 18. SIMANTIRE AND TITLE OF RESPECTOR N/A ELEV DEPTH 9 9 FIELD CLASSIFICATION OF MATERIALS (Deworktion) 18. SIMANTIRE AND TITLE OF RESPECTOR REMARKS 8 2 1 2 1<		/ERTICAL NCLINED	BOR	ING	VERTICAL	15. DAT	E BORIN	G	STARTED COMPLET 10/10/11 10/	TED /10/11		1
DEPTH BRILED INTO ROCK IT. TOTAL CORE RECOVERY FOR BORNO N/A a. TOTAL DEPTH OF BORNO 66' 16. SIGNATURE OF RECOVERY FOR BORNO N/A B. FOLSOM, Staff Professional B. Folsom, Staff Professional 16. SIGNATURE OF RECOVERY FOR BORNO N/A ELEV DEPTH 9 PELD CLASSIFICATION OF MATERIALS REC 8 9 REMARKS 8 9 27.0 6.0 POORLY GRADED SAND (SP), tan to brown, with gravel, with all. 100 SS-1 100 SS-1 100 SS-1 100 SS-1 100 SS-6 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100	6. THIC	KNESS O	F OVE	RBURDE	N	16. ELE	VATION	TOP O	F BORING 33'			1
a. TOTAL DEPTH OF BORINO 68' B. Folsom, Staff Professional ELEV DEPTH 9 FIELD CLASSIFICATION OF MATERIALS (Dewription) Res. 8 6 8 6 8 9 8 8 8 8 8 9 10 10 10	7. DEPT	TH DRILLE	ED INT	O ROCK		17. TOT 18. SIG	AL CORE	E RECO AND T	DVERY FOR BORING N/A			ł
ELEV DEPTH 9 FIELD CLASSIFICATION OF MUTREMLS (Dewription) ns 6 9 REMARKS 9 2 1 POORLY GRADED SAND (SP), tan to brown, with pravel, with all. 100 S8-1 100 S8-1 100 S8-3 100 S8-4 100 S8-4 100 S8-4 100 S8-5 100 S8-6 100 S8-6 100 S8-6 100 S8-6 100 S8-7 100 S8-7 100 S8-6 100 S8-7 100 S8-7 100 S8-7 100 S8-7 100 S8-7	8. TOTA	AL DEPTH	OF B	ORING	68'		B. Fols	iom,	Staff Professional			
27.0 6.0 ELASTIC SILT (MH), dark black to brown. 100 SS-1 Cravel = 16; Sand = 65; Fines = 12; SP-SM 3 4 10 SS-2 10 SS-3 10 SS-4 100 SS-6 100 SS-6 100 SS-6 100 SS-11 100 SS-11 100 SS-11 100 SS-11 100 SS-11 100 SS-11 100 SS-14 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100	ELEV	DEPTH	LEGEND		FIELD CLASSIFICATION OF MATERIALS (Description)	% REC	Samp No	•an	REMARKS	Blows/ 0.5 ft	N-Value	
100 SS-2 100 SS-3 100 SS-3 100 SS-3 100 SS-3 100 SS-3 100 SS-4 100 SS-1 100 SS-11		E		POORL gravel.	Y GRADED SAND (SP), tan to brown, v with silt.	with 100	SS-1			3 12	17	Ē
Image: Section of the sectio		F				100	55-2	1		6	12	ŧ
27.0 6.0 ELASTIC SILT (MH), dark black to brown. 100 SS-4 100 SS-4 100 SS-4 100 SS-4 100 SS-6 100 SS-6 100 SS-7 100 SS-6 100 SS-7 100 SS-6 100 SS-7 100 SS-7 100 SS-8 100 SS-8 100 SS-7 100 SS-8 100 SS-7 100 SS-10 100 SS-10 14.0 19.0 SILTY SAND (SM), tan to brown. 100 SS-11 100 SS-14 100 SS-14 100 SS-14 3.0		F		1		100	33-2	-	Gravel = 16: Sand = 65: Fines = 12:	6 21	12	ŧ
27.0 6.0 100 SS-4 100 SS-5 100 SS-5 100 SS-7 100 SS-6 100 SS-7 100 SS-8 100 SS-7 100 SS-6 100 SS-7 100 SS-6 100 SS-7 100 SS-8 100 SS-7 100 SS-9 100 SS-10 100 SS-10 100 SS-11 100 SS-12 100 SS-13 100 SS-14 100 SS-14 100 SS-14 100 SS-16 100 SS-17 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100 SS-16 100 SS-18 100 SS-18 100 SS-18 100 SS-19 100 SS-10 100 SS-12 100		E		1		100	SS-3		LL = NP; PI = NP; MC = 12; SP-SM	29 13	42	E
1:0 0:0 ELASTIC SILT (MH), dark black to brown. 100 SS-5 100 SS-6 100 SS-6 100 SS-7 100 SS-8 100 SS-7 100 SS-9 100 SS-9 100 SS-10 100 SS-11 100 SS-11 100 SS-11 100 SS-11 100 SS-11 100 SS-12 100 SS-14 100 SS-16 100 SS-16 100 SS-16 3.0 30.0 SILTY SAND (SM), fine to medium, black to tan 100 SS-20 <t< td=""><td>27.0</td><td>- 60</td><td></td><td>1</td><td></td><td>100</td><td>SS-4</td><td></td><td></td><td>11 13</td><td>20</td><td>F</td></t<>	27.0	- 60		1		100	SS-4			11 13	20	F
100 SS-6 100 SS-7 100 SS-10 100 SS-10 100 SS-11 100 SS-12 100 SS-12 100 SS-14 100 SS-15 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100 SS-17 100 SS-16 100 SS-17 100 SS-17 100 SS-17 100	27.0	-	ΪÍ	ELAST	IC SILT (MH), dark black to brown.	100	SS-5	1		3	8	ŧ
Image: Second		F				100	SS-6	1		3	6	ŧ
100 SS-7 100 SS-8 100 SS-8 100 SS-8 100 SS-9 100 SS-10 100 SS-11 100 SS-11 100 SS-11 100 SS-12 100 SS-12 100 SS-13 100 SS-14 100 SS-14 100 SS-14 100 SS-16 100 SS-16 100 SS-17 100 SS-18 100 SS-14 100 SS-16 100 SS-17 100 SS-18 100 SS-21 100 SS-21 100 SS-21 100 SS-21 100 SS-21 100		E						-		3	-	E
Image: Norwoven fabric and geogrid at 13.5 feet Image: N		F				100	55-7	4	Fines = 56; LL = 57; PI = 26;	3	5	F
Image: Nonwoven fabric and geogrid at 13.5 feet Image: N		F				100	SS-8		MC = 40; MH	5	11	Ē
Nonwoven fabric and geogrid at 13.5 feet 100 SS-10 100 SS-10 14.0 19.0 100 SS-11 100 SS-12 Fines = 94; LL = 90; PI = 35; 0		E				100	SS-9	1		2	11	Ē
14.0 19.0 SILTY SAND (SM), tan to brown. 100 SS-12 14.0 19.0 SILTY SAND (SM), tan to brown. 100 SS-13 100 SS-14 100 SS-15 100 SS-15 100 SS-16 100 SS-16 100 SS-17 100 SS-18 100 SS-18 5.0 28.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-19 3.0 30.0 SILT (MH), black to brown, high plasticity. 100 SS-20 Dry Density = 60.4 pcf 0 0 0 0 0 0 0 0 0 100 SS-20 100 SS-23 Dry Density = 60.4 pcf 0 0 0 0 0 </td <td></td> <td>F</td> <td>Ш</td> <td>Nonwo</td> <td>ven fabric and geogrid at 13.5 feet</td> <td>100</td> <td>SS-10</td> <td></td> <td></td> <td>6 1 0</td> <td>0</td> <td>ŧ</td>		F	Ш	Nonwo	ven fabric and geogrid at 13.5 feet	100	SS-10			6 1 0	0	ŧ
14.0 19.0 SS-11 14.0 19.0 SS-12 100 SS-12 100 SS-13 100 SS-14 100 SS-14 100 SS-15 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100 SS-16 100 SS-17 100 SS-18 5.0 28.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-20 100 SS-21 100 SS-21 100 SS-21 100 SS-22 100 SS-23 100 SS-23 100 SS-23 100 </td <td></td> <td>E</td> <td></td> <td></td> <td></td> <td>100</td> <td>00-10</td> <td>-</td> <td></td> <td>0</td> <td></td> <td>Ē</td>		E				100	00-10	-		0		Ē
14.0 19.0 Image: Similar Similare Similar Similar Similar Similar Similar Similar Similar Similar		E				100	SS-11			0	0	E
14.0 19.0 100 \$S-13 14.0 19.0 SILTY SAND (SM), tan to brown. 100 \$S-13 100 \$S-14 100 \$S-15 100 \$S-16 100 \$S-15 100 \$S-16 11 18 100 \$S-16 100 \$S-17 100 \$S-18 100 \$S-16 100 \$S-17 100 \$S-18 100 \$S-16 100 \$S-17 100 \$S-18 100 \$S-18 100 \$S-19 100 \$S-19 100 \$S-19 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-20 100 \$S-21 100 \$S-23 T Dry Density = 60.4 pcf 0 0 0 0 0 0 0 0 0 0 100 \$S-23 T<		F				100	SS-12	2	Fines = 94; LL = 90; PI = 35; MC = 88; MH	0	0	ŧ.
SILTY SAND (SM), tan to brown. 100 SS-14 100 SS-14 100 SS-15 100 SS-16 100 SS-17 100 SS-18 5.0 28.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-19 3.0 30.0 SILT (MH), black to brown, high plasticity. 100 SS-20 100 SS-21 100 SS-22 100 SS-23 SILT (MH), black to brown, high plasticity. 100 100 SS-21 100 SS-22 100 SS-23 ST Dry Density = 60.4 pcf 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.0	19.0				100	SS-13	5		0	12	Ē
100 SS-14 100 SS-14 100 SS-15 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-17 100 SS-17 100 SS-18 5.0 28.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-20 100 SS-21 100 SS-22 100 SS-23				SILTYS	SAND (SM), tan to brown.	4.04	00.44	-		10 6	40	Ł
100 SS-15 100 SS-15 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-16 100 SS-17 100 SS-17 100 SS-18 5.0 28.0 100 SS-18 100 SS-18 100 SS-18 100 SS-19 3.0 30.0 3.0 30.0 3.0 30.0 $SILT$ (MH), black to brown, high plasticity. 100 100 SS-20 100 SS-21 100 SS-22 100 SS-23 100 SS-23 $MC = 66$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td></td><td>F</td><td></td><td>1</td><td></td><td>100</td><td>55-14</td><td></td><td></td><td>7</td><td>18</td><td>ŧ</td></t<>		F		1		100	55-14			7	18	ŧ
100 SS-16 100 SS-16 100 SS-16 100 SS-17 100 SS-17 100 SS-17 100 SS-18 5.0 28.0 100 SS-18 100 SS-17 100 SS-18 100 SS-18 100 SS-19 100 SS-19 100 SS-19 100 SS-19 100 SS-19 100 SS-20 100 SS-21 100 SS-21 100 SS-21 100 SS-21 100 SS-22 100 SS-23 T 100 100 SS-23 100 SS-23 100 SS-23 100 SS-23 100 SS-23 100 SS-23 100 100 100 SS-23 100		Ē		1		100	SS-15	5		11 32	43	Ē
8.0 25.0 100 SS-17 100 SS-17 100 SS-17 100 SS-18 100 SS-18 5.0 28.0 100 SS-19 3.0 30.0 100 SS-19 3.0 30.0 100 SS-20 100 SS-20 5T 0 0 100 SS-20 5T 0 0 100 SS-20 5T 0 0 0 100 SS-20 5T 0 0 0 0 100 SS-20 5T 0 0 0 0 0 100 SS-20 5T 0 0 0 0 0 0 0 <		F		1		100	SS-16	;		14	19	F
CLAY (CH), dark black to brown, high plasticity. 100 SS-18 5.0 28.0 5.0 28.0 3.0 30.0 3.0 30.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-19 100 SS-20 100 SS-20 SILT (MH), black to brown, high plasticity. 100 SS-21 100 SS-23 100 SS-23 SAS FORM 1836-A Boring Designation	8.0	25.0		1		100	SS-17	,		6 4 2	3	ŧ
5.0 28.0 MC = 79; CH 0 3 5.0 28.0 100 SS-19 1 4 3.0 30.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-20 1 4 3.0 30.0 SILTY SAND (SM), fine to medium; black to tan. 100 SS-20 1 0 0 1 100 SS-20 100 SS-21 0 0 0 0 1 100 SS-22 100 SS-22 ST Dry Density = 60.4 pcf 0<		-		CLAY (CH), dark black to brown, high plasticity.	. 100	SS-19		Fines = 74; LL = 83; PI = 47;	1 0	3	E
5.0 28.0 28.0 100 \$S-19 3.0 30.0 SILTY SAND (SM), fine to medium; black to tan. 100 \$S-20 3.0 30.0 SILT (MH), black to brown, high plasticity. 100 \$S-21 100 \$S-21 100 \$S-21 100 \$S-22 T 0 0 100 \$S-23 SS-21 0 0 100 \$S-21 0 0 0 100 \$S-23 SS-21 0 0 100 <td></td> <td>E</td> <td></td> <td></td> <td></td> <td>100</td> <td>00-10</td> <td>-</td> <td>MC = 79; CH</td> <td>3</td> <td>5</td> <td>ŧ</td>		E				100	00-10	-	MC = 79; CH	3	5	ŧ
3.0 30.0 100 SS-20 100 SS-20 Image: Sill of the second sec	5.0	- 28.0		SILTY	SAND (SM), fine to medium; black to tar	100 1.	SS-19	'		1 3	4	ŧ
SAS FORM 1836-A Boring Designation EI-2011-SPT-4 SHEET 1 of 2	3.0	30.0		}		100	SS-20			0	0	ŧ
Image: Sas Form 1836-A Boring Designation EI-2011-SPT-4 SHEET 1 of 2		_		SILT (N	IH), black to brown, high plasticity.	100	SS-21	1		0	0	Ē
Image: Sas Form 1836-A Boring Designation EI-2011-SPT-4 SHEET 1 of 2		F				400	ee 20			0	0	ŧ
Image: Sas Form 1836-A Boring Designation EI-2011-SPT-4 SHEET 1 of 2		F				100	55-22	ST	Dry Density = 60.4 pcf MC = 66	0	0	ŧ
SAS FORM 1836-A Boring Designation EI-2011-SPT-4 SHEET 1 of 2						100	SS-23	-		0	0	ŧ
	SAS F	ORM 1	836-	A		В	ring	Desi	gnation EI-2011-SPT-4	SHEET 1	1 of 2	2

Wilmington Harbor Improvements Project 3 Appendix C - Geotechnical Engineering

		Boring	1 De	esignation EI-2011-SI	PT-4		-
DRILLING LOG (Cont Sheet)	Wiln	LATION nington	Dist	trict	SHEET OF 2	2 SHEET:	s
PROJECT	COORD	INATE SY	STEN	HORIZONTAL	VERTICA	L	1
Eagle Island Dredge Disposal Area	Stat	e Plane	•	NAD 83	NAV	/D88	
LOCATION COORDINATES	ELEVAT	ION TOP	OF B(ORING			
N 170934.1 E 2314360	33'	đ		1			_
ELEV DEPTH	% REC	Samp No	•an	REMARKS	Ricoval	0.5 ft N-Value	3
SILT (MH), black to brown, high plasticity. (continu	ued) 100	SS-24		Vane Shear Test @ 35' peak = 3275 psf ; residual = 102	25	0 0	Ţ
	100	SS-25		psf	F	0 0	F
			ST	Gravel = 1; Sand = 36; Fines = LL = 65; PI = 30; MC = 86; MH	63;	-	Ŧ
E III	100	SS-26		CU, Consolidation	E	0 0	Ē4
-0.0 - 42.0	100	SS-27	1	peak = 1845 psf ; residual = 61	5 psf	0 6 12	Ē
-10.0 43.0 SILTY SAND (SM), fine to medium; brown to tan.	100	SS-28	1		E	0 2 5 9	ŧ
PEAT (Pt), dark black to brown.	100	SS-29	1			4 2 1 2	ŧ
	100	SS-30			E	1 2 2 5	+ 4
	100	SS-31			F	3 0 0 1	Ŧ
wood encountered in SS-32	100	SS-32		Gravel = 46; Sand = 46; Fines =	= 2;	1 5 4 7	Ŧ
	100	SS-33		MC = 346; Organic Content = 5 (Sample Consisted of mostly	6%	3 0 0 0	- 5
-19.0 52.0	100	SS-34		organic material)	F	0 3 5 14	Ŧ
POORLY GRADED SAND (SP), brown to tan, wit silt.	h	SS-35			E	9 6 9 18	Ŧ
	100	SS-36			E	9 5 6 14	Ŧ.
	100	SS-37			F	8 4 6 12	F°
	100	SS-38		Sand = 97; Fines = 3; LL = NP;		6 4 8 19	Ŧ
-26.5 59.5	100	SS-39		FI - NF, NG - 24, SF	Ē	11 1 1 1	Ŧ
SILT (MH), dark brown.	100	SS-40			E	0 0	- F 6
-29.0 62.0	dark 100	SS-41			E	0 9 15 37	Ţ.
brown to tan, with silt.	100	SS-42				22 12 13 26	Ŧ
	100	55.42				13 7 10 22	- 6
-34.0 67.0	70	SS-44				12 12 34 100 100	5
-35.0 -68.0 POORLY GRADED SAND (SP), pale gray, moder	rate 100	SS-45				100 _ 10(2
BOTTOM OF BOREHOLE AT 68.0 ft		w	ater l	Level Data			
		Af 24	adin ter dr hou	ng Depth Notes rilling Not Recorded rs 19.5 Cave in at 26 f	; Wash D ft	rilling	
SAS FORM 1836-A	Bo	orina D)esi	gnation EI-2011-SPT	-4 SHE	ET 2 of	2

Wilmington Harbor Improvements Project 4 Appendix C - Geotechnical Engineering

Wilmington Harbor Improvements Project 8 Appendix C - Geotechnical Engineering

						E	Boring) De	esignation EI-2011-SPT-1	14	-
DF	RILLIN	ig l	.OG	South Atlantic		INSTALL Wilm	ATION Iington	Dist	trict OF	^{ЕТ} 1 2 SHEETS	з
1. PROJ	ECT		odao F			9. COOR	DINATE	SYSTE	EM HORIZONTAL VERT		1
⊏ag	ie isiaľ	iu DI	euge L	nspusal Alea		10. SIZE	AND TYP	PEOF	вп 2-15/16 Drag Bit		1
2. HOLE		R PT_1	LC م	CATION COORDINATES	468.4	11. MAN		RER'S	DESIGNATION OF DRILL		1
3. DRILL	ING AGE	ENCY	4	N 171913.7 E 23142	+00.4	12. TOT	AL SAMPL	ES	DISTURBED UNDIS	TURBED	-
	acon (ultants,	Inc		49 707/				2	_
W. E	Duggin	S		.	•	13. TOTA	ATION G		ND WATER See Remarks		-
5. DIREC ⊠ V	CTION O ERTICAL	F BOF	RING	DEG FROM VERTICAL	BEARING	15. DATE	E BORING	3	STARTED COMPLET 10/14/11 10/	ED /17/11	_
6. THIC	KNESS C	FOVE	ERBURDE	N		16. ELE√	ATION T	OP OF	FBORING 33'		_
7. DEPT	H DRILL	ED IN	FO ROCK			17. TOT/ 18. SIGN	AL CORE		OVERY FOR BORING N/A		-
8. TOTA		OFE	ORING	69'		E	B. Fols	om,	Staff Professional		
ELEV	DEPTH	LEGEND		FIELD CLASSIFICATION O (Description)	F MATERIALS	% REC	Samp No.	*an	REMARKS	Blows/ 0.5 ft N-Value	
32.0	- 1.0		SILTY	SAND (SM), fine to mediu	um; brown to tan.		SS-1			1 2	E
	_	Ш	SILT (N	√IH), dark gray to black, hi	igh plasticity.		SS-2	-		1 0 0 0	ŧ
29.5	- <u>3.5</u> -		POORI	LY GRADED SAND (SP),	, fine to medium; da	ark	SS-3			5 24 25 49	ŧ
				ir sin, with gravei.			SS-4		Gravel = 4; Sand = 80; Fines = 7; LL = NP; PI = NP; MC = 4; SP-SM	11 20 22 42	F
	_						SS-5	-		12 19 17 7	F
	-						SS-6	-		19 23 5	ŧ
							SS-7	-		18 36 18 8	Ē
	-						SS-8	-	Gravel = 0; Sand = 87; Fines = 7;	14 28 14 10 10 21	ł
	-						SS-10		LL = NP; PI = NP; MC = 16; SP-SM	10 21 11 5 7 16	ŧ
17.0	_ 						SS-11	-		9 0 1 5	Ē
	-	Ш	SILT (N	√H), dark gray to black, hi	igh plasticity.		SS-12			4 5 8 18	ŧ
	-	Ш					SS-13			1 3 4	Ŧ
							SS-14			3 1 2	F
11.0	22.0	ļļļ	POORI	LY GRADED SAND (SP),	, dark tan, with silt.		SS-15	-			ŧ
	-						SS-16	-		9 8 4	F
							SS-17			6 11 5 3	F:
	_						SS-18	-		$\begin{array}{c c} 3 & 6 \\ \hline 3 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	ŧ
	-						55-19			0 0 2 2 5	ŧ
			1				SS-21		Gravel = 0; Sand = 96; Fines = 4;	3 2 3 7	Ŧ
							SS-22		L - NF , F - NF ; M C = 27; SP	4 1 2 5	Ŧ
							SS-23			3 1 3 7	ł
SAS F	⊢ ORM 1	836	<u> </u> A			Bo	rina F)esi	gnation El-2011-SPT-14	T SHEET 1 of	<u>_</u> 2

FEB 08

ig Desigr

Wilmington Harbor Improvements Project | 15 Appendix C - Geotechnical Engineering |

					В	Soring	l De	signation EI-2011-SPT	-14		
DRILLING LOG (Cont Sheet)					ALLA 'ilmi	inaton	Dist	trict OF	EET 2 SH	2 HEETS	
PROJEC	PROJECT			COOL	RDIN	ATE SY	STEM	HORIZONTAL VEF	RTICAL		
Eag	le Islar	nd D	redge Disposal Area	St	ate	Plane		NAD 83	NAVD	38	
LOCATI	ON COO	RDIN/	TES	ELEV	ATIC	ON TOP	OF BO	DRING			
N 17	71913.	7 E	2314468.4	33	}'						
ELEV	DEPTH	LEGEND	FIELD CLASSIFICATION OF MATERIALS (Description)	R	% EC	Samp No.	*ON	REMARKS	Blows/ 0.5 ft	N-Value	
	-		POORLY GRADED SAND (SP), dark tan, with silt.			SS-24			8	17	- 3 -
	_					SS-25			2	5	E
-5.5	- 38.5	· · ·				SS-26	ST	Gravel = 1; Sand = 31; Fines = 68;	0	0	Ē
	-	Ш	SILT (MH), dark gray to black, high plasticity.		-	SS-27		UU, Consolidation	0	0	ŧ.
-9.0	42.0					SS-28		Vane Shear @ 40' peak = 2610 psf ; remolded = 1085 psf	0 2 1	5	
-9.0	-					SS-29			2 2	4	Ē
-11.0	- 44.0 -		SILT (MH), dark gray to black, high plasticity.	_		SS-30	ST	Gravel = 0; Sand = 10; Fines = 90; LL = 76; PI = 38; MH Consolidation	2 0 0	0	È,
-13.0	46.0					SS-31		Vara Ohaar @ 40	0	6	Ē
	-	·····	SILLY PEAT (Pt), black to brown.			SS-32		peak = 2610 psf ; remolded = 1190 psf	2 4 5	9	Ē
	_					SS-33			1 2 1	3	ŧ.
			- - -			SS-34		MC = 415; Organic Content = 38%	0 0 0	0	÷ ۽
-19.0	- 52.0	 	SILTY SAND (SM) fine to medium: dark tan to			SS-35			3 7 7	14	F
			brown.			SS-36		SS-36 Gravel = 7; Sand = 53; Fines = 38;	0 1 4	5	Ē
	_					SS-37		LL = 73, FT = 30, MC = 100, 3M	3 4 8	12	÷
						SS-38			5 5 8	13	Ē
-25.5	 58.5					SS-39		Sample contains wood on Sieve Size #8 Gravel = 0: Sand = 97: Fines = 3:	4 8 9	17	Ē
	_		POORLY GRADED SAND (SP), brown to tan, with silt.			SS-40		LL = NP; PI = NP; MC = 24; SP	5 9 12	21	Ė,
	-					SS-41			7 7 6	13	ţ,
	-		with organics from 61.5 to 63 feet			SS-42			0	3	Ē
	-					SS-43		Gravel = 0; Sand = 90; Fines = 10; LL = NP; PI = NP; MC = 25; SP-SM	14 16 17	33	Ē
	_		•		F	SS-44			3	23	- e
	_		4		F	SS-45			31 29	79	Ē
20.0					F	SS-46			50 16 12	38	Ē
00.0	1 00.0	<u> - 9</u>	BOTTOM OF BOREHOLE AT 69.0 ft		L	Wa Re Afi 24	ater I eadin ter dr hou	, g Depth Notes ;illing Not Recorded; Wa rs Not Recorded; Ca	ash Drillin ve in at	ng 13 ft	

Wilmington Harbor Improvements Project | 16 Appendix C - Geotechnical Engineering |

Wilmington Harbor Improvements Project | 1 Appendix C - Geotechnical Engineering |

Attachment B: Data Used in Stability and Seepage Analysis

Figure 47. Grain size distribution results for EI-2011-SPT-4.

Figure 48. Grain size distribution results for EI-2011-SPT-4 (cont).

Figure 49. Grain size distribution results for EI-2011-SPT-14.

Figure 50. Grain size distribution results for EI-2011-SPT-14 (cont).

Figure 51. Atterberg Limit testing results for EI-2011-SPT-4.

Figure 52. Atterberg Limit testing results for EI-2011-SPT-14.

Figure 53. CU test results for UD-4.

Figure 54. CU results for UD-4 (cont).

Figure 55. UU test results for UD-14.

Figure 59. 1-D Consolidation test results for UD-14 (Cross-Section 1 Undisturbed Sample 2).

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
223+00	31	1680	110
223+00	30.5	1000	110
223+00	27	700	110
223+00	26	900	110

Table 11. Cohesion spatial function values used for cross-section 1 at Sta. 223+00.

1		Elev	Su	
	Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
	223+00	24.7	2140	110
	223+00	24.1	1480	110
	223+00	22.3	1140	110
	223+00	14.4	2200	110

Table 12. Cohesion spatial function values used for cross-section 1 at Sta. 322+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
322+00	-1.1	1180	110
322+00	-2.5	940	110
322+00	-3.4	420	95
322+00	-5.4	1120	110
322+00	-9.7	800	110
322+00	-12.2	780	110
322+00	-13	560	100
322+00	-15.1	480	95

Sta (ft)	Elev (NAVD88)	Su (T/ft²)	¥(pcf)
322+00	-16.6	620	105
322+00	-17.9	860	110
322+00	-19.8	1040	110
322+00	-20.4	760	110
322+00	-20.8	2340	110

Table 13. Cohesion spatial function values used for cross-section 1 at Sta. 396+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	ɣ (pcf)
396+00	9.1	880	110
396+00	8.7	480	95
396+00	4.9	800	110
396+00	-2.6	1320	110
396+00	-3.6	780	110
396+00	-4.3	860	110
396+00	-5.5	1760	110
396+00	-7.8	1000	110
396+00	-8.9	600	105
396+00	-10.3	900	110
396+00	-11.8	1020	110
396+00	-16	980	110
396+00	-16.9	840	110

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
396+00	-17.5	720	110
396+00	-18.5	660	105
396+00	-20.9	780	110
396+00	-22.3	580	100
396+00	-23.7	540	100
396+00	-25.7	420	95
396+00	-26.8	640	105
396+00	-28.5	800	110
396+00	-29.2	740	110
396+00	-30.9	640	105
396+00	-33.4	880	110
396+00	-34.6	220	90
396+00	-35	1100	110

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
176+00	30.7	2620	110
176+00	28.1	960	110
176+00	26.7	560	100
176+00	24.9	860	110
176+00	23.3	340	90
176+00	22.5	1220	110
176+00	21.2	480	95
176+00	20.6	1360	110
176+00	19.8	900	110
176+00	18.5	2060	110
176+00	10.1	380	90
176+00	9.6	300	90

Sta (ft)	Elev (NAVD88)	Su (T/ft ²)	γ(pcf)
176+00	6	540	100
176+00	2.4	980	110
176+00	0.4	540	100
176+00	-0.5	880	110
176+00	-2.6	720	110
176+00	-3.6	540	100
176+00	-5.7	960	110
176+00	-7.2	840	110
176+00	-9.3	3060	110

Table 14. Cohesion spatial function values used for cross-section 1 at Sta. 176+00.

Table 15. Cohesion spatial function values used for cross-section 1 at Sta. 128+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	ɣ (pcf)
128+00	17.6	1540	110
128+00	16.9	1100	110
128+00	16.4	880	110
128+00	16.5	840	110
128+00	14.8	520	100
128+00	14.4	1700	110
128+00	7.2	900	110
128+00	6.8	460	95
128+00	6.3	1360	110
128+00	-4.6	620	105
128+00	-6	480	95
128+00	-7.6	260	90

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
128+00	-9.2	3380	110
128+00	-10.6	140	90
128+00	-11.6	480	95
128+00	-12.9	740	110
128+00	-15.9	620	105
128+00	-16.9	400	95
128+00	-18.2	340	90
128+00	-19.7	200	90
128+00	-21.2	320	90
128+00	-22.9	1560	110
128+00	-23.7	3140	110

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	𝒡(pcf)
206+00	27.5	3280	110
206+00	25.1	1630	110
206+00	24.5	1160	110
206+00	23.6	1000	110
206+00	22.5	880	110
206+00	20.8	860	110
206+00	19.4	460	95
206+00	16.3	520	100
206+00	12.8	620	105
206+00	9.6	740	110
206+00	4.7	500	100
206+00	2.8	520	100
206+00	-0.2	380	90
206+00	-2.1	460	95
206+00	-2.4	440	95

Elev Su (T/ft²) Sta (ft) (NAVD88) γ(pcf) 206+00 400 -3.6 95 206+00 -8.2 280 90 206+00 -10.5 340 90 206+00 -11.7 520 100 206+00 -13.6 520 100 206+00 -16.7 1220 110 206+00 -18.1 700 110 206+00 -21.1 1000 110 206+00 -22.1 800 110 206+00 -22.3 1180 110 206+00 -24.3 820 110 206+00 -27.7 1060 110 206+00 -28.6 280 90 206+00 -29 460 95 206+00 -29.7 4520 110

Table 17. Cohesion spatial function values used for cross-section 2 at Sta. 265+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	𝒡 (pcf)
265+00	18.7	1840	110
265+00	18.5	760	110
265+00	18	680	105
265+00	17.5	760	110
265+00	15.8	940	110
265+00	14.5	1040	110
265+00	12.5	480	95
265+00	10.4	420	95
265+00	9.3	740	110
265+00	6	600	105
265+00	5.3	540	100
265+00	4.6	460	95
265+00	2.2	400	95
265+00	0.8	460	95
265+00	-2.7	520	100
265+00	-5.7	420	95
265+00	-6.7	480	95

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
265+00	-8.6	380	90
265+00	-10	540	100
265+00	-10.7	680	105
265+00	-11.7	1240	110
265+00	-12.4	1920	110
265+00	-14.2	940	110
265+00	-15	780	110
265+00	-18.6	900	110
265+00	-19.4	1100	110
265+00	-20.9	300	90
265+00	-22.6	520	100
265+00	-22.8	1020	110
265+00	-23.4	420	95
265+00	-24.4	660	105
265+00	-25.6	340	90
265+00	-27.6	320	90
265+00	-28.4	1740	110

Table 16. Cohesion spatial function values used for cross-section 2 at Sta. 206+00.

Sta (ft)	Elev (NAVD88)	Su (T/f+ ²)	V (ncf)
303+00	8.9	2080	110
303+00	8.2	840	110
303+00	7.4	520	100
303+00	6.2	560	100
303+00	5.4	2000	110
303+00	2.9	680	105
303+00	1.5	760	110
303+00	0.8	560	100
303+00	-0.4	440	95
303+00	-1.3	560	100
303+00	-2.6	540	100
303+00	-5.3	480	95
303+00	-7.8	460	95
303+00	-14.5	640	105

Su Elev (T/ft²) (NAVD88) γ(pcf) Sta (ft) 303+00 -15 1600 110 303+00 -16.2 520 100 303+00 -17.5 380 90 303+00 -18.5 140 90 303+00 -19.5 240 90 303+00 -20.8 160 90 303+00 -22.3 260 90 303+00 -24.4 320 90 303+00 -26.4 440 95 303+00 -27.5 1420 110 303+00 -29.4 760 110 303+00 -29.7 400 95 303+00 -31.1 240 90 303+00 980 110 -31.6

Table 19. Cohesion spatial function values used for cross-section 2 at Sta. 142+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
142+00	17.4	1900	110
142+00	17	800	110
142+00	15.5	900	110
142+00	14.4	660	105
142+00	13.6	1760	110
142+00	12.8	840	110
142+00	11.7	640	105
142+00	10.9	540	100
142+00	8.8	460	95
142+00	8.3	340	90
142+00	7.9	920	110
142+00	6	2220	110
142+00	5.5	360	90
142+00	3.6	500	100
142+00	1.2	540	100
142+00	-1.1	460	95
142+00	-3.2	480	95

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
142+00	-4.7	500	100
142+00	-7.6	520	100
142+00	-8.5	600	105
142+00	-11.2	560	100
142+00	-12.9	1140	110
142+00	-15.5	660	105
142+00	-16.4	920	110
142+00	-17.4	560	100
142+00	-19.3	740	110
142+00	-20	1300	110
142+00	-21.4	680	105
142+00	-21.9	640	105
142+00	-22.9	1240	110
142+00	-24.6	1040	110
142+00	-25.6	800	110
142+00	-29	460	95
142+00	-29.5	2960	110

Table 18. Cohesion spatial function values used for cross-section 2 at Sta. 303+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
83+00	16.7	2160	110
83+00	15.1	1220	110
83+00	13	480	95
83+00	10.9	420	95
83+00	9.5	500	100
83+00	4.9	1820	110
83+00	4.3	380	90
83+00	3.4	660	105
83+00	3.2	400	95
83+00	2.1	680	105
83+00	1.2	380	90
83+00	0.2	420	95
83+00	-3.4	460	95
83+00	-4.3	260	90
83+00	-6	320	90
83+00	-6.7	360	90

Su Elev (T/ft²) (NAVD88) γ(pcf) Sta (ft) 83+00 -9.9 740 110 83+00 -11.6 800 110 83+00 -12.2 780 110 -13.2 83+00 1640 110 83+00 -14.2 1160 110 83+00 -17.1 880 110 83+00 -17.9 560 100 83+00 -18.8 860 110 83+00 -20.7 680 105 83+00 -21.4 580 100 83+00 -22 95 440 83+00 -23.9 300 90 83+00 -25.3 640 105 -26.8 83+00 600 105 83+00 -27.5 1980 110

Table 20. Cohesion spatial function values used for cross-section 2 at Sta. 83+00.

Table 21. Cohesion spatial function values used for cross-section 2 at Sta. 351+00.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	𝒡 (pcf)
351+00	8.9	2080	110
351+00	8.2	840	110
351+00	7.4	520	100
351+00	6.2	560	100
351+00	5.4	2000	110
351+00	2.9	680	105
351+00	1.5	760	110
351+00	0.8	560	100
351+00	-0.4	440	95
351+00	-1.3	560	100
351+00	-2.6	540	100
351+00	-5.3	480	95
351+00	-7.8	460	95

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
351+00	-14.5	640	105
351+00	-15	1600	110
351+00	-16.2	520	100
351+00	-17.5	380	90
351+00	-18.5	140	90
351+00	-19.5	240	90
351+00	-20.8	160	90
351+00	-22.3	260	90
351+00	-24.4	320	90
351+00	-26.4	440	95
351+00	-27.5	1420	110
351+00	-29.4	760	110
351+00	-29.7	400	95

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
417+50	1.5	760	110
417+50	0.8	560	100
417+50	-0.4	440	95
417+50	-1.3	560	100
417+50	-2.6	540	100
417+50	-5.3	480	95
417+50	-7.8	460	95
417+50	-14.5	640	105
417+50	-15	1600	110
417+50	-16.2	520	100
417+50	-17.5	380	90

Elev Su (T/ft^2) Sta (ft) (NAVD88) γ(pcf) 417+50 -18.5 140 90 417+50 -19.5 240 90 417+50 -20.8 90 160 417+50 -22.3 260 90 417+50 -24.4 320 90 417+50 95 -26.4 440 417+50 -27.5 1420 110 417+50 -29.4 760 110 417+50 -29.7 400 95 417+50 -31.1 240 90 417+50 -31.6 980 110

Table 22. Cohesion spatial function values used for cross-section 2 at Sta. 417+50.

Table 23. Cohesion spatial function values used for cross-section 2 at Sta. 507+50.

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
507+50	-16.2	520	100
507+50	-17.5	380	90
507+50	-18.5	140	90
507+50	-19.5	240	90
507+50	-20.8	160	90
507+50	-22.3	260	90
507+50	-24.4	320	90
507+50	-26.4	440	95
507+50	-27.5	1420	110
507+50	-29.4	760	110
507+50	-29.7	400	95
507+50	-31.1	240	90
507+50	-31.6	980	110

	Elev	Su	
Sta (ft)	(NAVD88)	(T/ft ²)	γ(pcf)
53	17.6	1540	110
53	16.9	1100	110
53	16.4	880	110
53	16.5	840	110
53	14.8	520	100
53	14.4	1700	110
53	7.2	900	110
53	6.8	460	95
53	6.3	1360	110
53	-4.6	620	105
53	-6	480	95
53	-7.6	260	90
53	-9.2	3380	110
53	-10.6	140	90
53	-11.6	480	95
53	-12.9	740	110
53	-15.9	620	105
53	-16.9	400	95
53	-18.2	340	90
53	-19.7	200	90
53	-21.2	320	90
53	-22.9	1560	110
53	-23.7	3140	110

Table 24. Cohesion spatial function values used for cross-section 2 at Sta. 53+00.

Attachment C: Boring Logs for Battery Island Turn

			INCTALL		Ho	le No.: WH12-V-16
/ibratory	y Drilling Log	SAD	INSTALLA	WILMIN	IGTON	N DISTRICT OF 1 SHEET
. PROJECT WILMIN	GTON HARE	BOR	10. SIZE / 11. DATU	AND TYPE (M FOR ELE	OF BIT	4" DIA VIBRACORE
N 60	,202.0 E 2,	298,174.0	12. MANU	JFACTURE	R'S DESIG	NATION OF DRILL
. DRILLING A	GENCY WILMINGTO	N DISTRICT	10 7074		Vi	bracore Snell
HOLE NO.(As shown on drawing title		13. TOTA BURE	L NO. OF O EN SAMPL	VER- ES TAKEN	V A O	
. NAME OF D		One Wh	14. TOTA 15. ELEV	L NUMBER	CORE BC	DXES ()
. DIRECTION	I alon	Smith	16. DATE	HOLE	STAR	
		DEG. FROM VERTICAL				7/12/12 7/12/12
. THICKNESS	S OF WATER COLU	MN 40.4'	18. TOTA	L CORE RE	COVERY	FOR BORING N/A
DEPTH DR	LLED INTO ROCK	0.0'	19. SIGN/	ATURE OF	NSPECTO	DR
		CLASSIFICATION OF MATERIALS	. ,	%CORE	BOXOR	REMARKS
(MLLW) a	(feet) Legend b C	(Description) d		RECOVERY 9	NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) 9
-40.4	38.0	0.0' TO 40.4' WATER OCEAN BOTTOM @40	.4'		40.4	Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is
-41.4		SP , Light gray, poorly graded silty sand.			40.4 1 41.4	and compensation is made for tide such that Top of Hole is 0.0 EL MULW
-43.2	42.0	SP-SC, Gray, poorly grad silty sand, with clay, trace shells.	ed ,	_	2 —43.2—	
-44.5	44.0	SC , Gray, clayey sand, wi shells.	ith,	_	3 —44.5—	-
	46.0	ML, Light gray, silty sand, with, with some gravel.			4	VIBRACORE BORING From 0.0' to 15.10' Ran 20' Rec: 20' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.
-51.0	50.0		54		51	LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SM
	52.0	SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH TH UNIFIED SOIL CLASSIFICATION SYST	IN IE EM			3 SC 4 SW-SM Soils are Lab Classified in Accordance with ASTM-D2487
	54.0					COMPLETION NOTE: Terminated hole at refusa or predetermined depth at 10.6' below ocean bottom
	RM 1836 PRE	VIOUS EDITIONS ARE OBSOLETE	PR	OJECT		HOLE NO.

Wilmington Harbor Improvements Project 3 Appendix C - Geotechnical Engineering

Wilmington Harbor Improvements Project | 4 Appendix C - Geotechnical Engineering |

Wilmington Harbor Improvements Project 5 Appendix C - Geotechnical Engineering

Wilmington Harbor Improvements Project 6 Appendix C - Geotechnical Engineering

		DIVISION	IN INT 1 1 1	TION	Ho	le No.: WH12-V-17
Vibrator	y Drilling Log	SAD			IGTON	NDISTRICT OF 1 SHEET
. PROJECT		OR	10. SIZE A 11. DATUM	ND TYPE (OF BIT	4" DIA VIBRACORE
LOCATION N 59	9,520.0 E 2,2	297,750.0	12 MANU	FACTURES	R'S DESIG	
. Drilling		N DISTRICT			Vi	bracore Snell
HOLE NO.	(As shown on drawing title	WH12-V-17	13. TOTAL BURDI	_ NO. OF O EN SAMPL	VER- ES TAKEN	DISTURBED UNDISTURBED
NAME OF			14. TOTAL		CORE BC	XES ()
DIRECTIO	N OF HOLE	Smun	16. DATE	HOLE	STAR	
		DEG. FROM VERTICAL	17. ELEVA		OF HOLE	0.0
. THICKNES	SS OF WATER COLUM	<u>N 38.0'</u>	18. TOTAL	CORE RE	COVERY	FOR BORING N/A
. DEPTH DE	PTH OF HOLE	46.4'	19. SIGNA	TURE OF I	NSPECTO)R
ELEVATION (MLLW) a	DEPTH (feet) c	CLASSIFICATION OF MATERIALS (Description) d	\$	%CORE RECOVERY 8	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
38.0		0.0' TO 38' WATER OCEAN BOTTOM @3 SW, Gray, well graded sand, with, some shells.	8'			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.
44.1	44.0	SP, Light gray, poorly graded silty sand. BOTTOM OF HOLE AT 4 SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH TH	¥6.4' IN HE		44.1 2 46.4	VIBRACORE BORING From 0.0' to 12.00' Ran 20' Rec: 20' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar Number Classification
	50.0	UNIFIED SOIL CLASSIFICATION SYST	EM			1 SP 2 SP Soils are Lab Classified in Accordance with ASTM-D2487 COMPLETION NOTE: Terminated hole at refusal or predetermined depth at 8.4' below ocean bottom

10

PROJECT WILMINC UCATION N 60, DRILLING AC HOLE NO.(As and file number) NAME OF DF DIRECTION C UCATION TOTAL DEPTH DRILL TOTAL DEPTH ELEVATION (MLLW) a	GTON HARBO	DR 197,978.0 1 DISTRICT WH12-V-18 Smith D DEG. FROM VERTICAL N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	10. SIZE A 11. DATUI 12. MANU 13. TOTAI BURD 14. TOTAI 15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGNA	FACTUREF FACTUREF NO. OF O EN SAMPL NUMBER TION GRC HOLE CORE RE CORE RE RECOVERY 0	COF BIT VATION E S DESIG VI VER- ES TAKEN CORE BO UND WAT STAR OF HOLE COVERY NSPECTCO BOX OR SAMPLE NO f	4" DIA VIBRACORE A" DIA VIBRACORE DATUM SHOWN <i>BM or MSL</i> MLLW NATION OF DRILL bracore Snell UNDISTURBED UNDISTURBED UNDISTURBED UNDISTURBED UNDISTURBED UNDISTURBED VIDISTURBED UNDISTURBE
LOCATION LOCATION N 60,1 DRILLING AC And file number; NAME OF DR DIRECTION C VERTIC/ THICKNESS DEPTH DRILL TOTAL DEPT LEEVATION (MLLW) a -40.5	AL INCLINE AL INC	297,978.0 I DISTRICT WH12-V-18 Smith Deg. FROM VERTICAL N 40.5 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	11. DATUI 12. MANU 13. TOTAI BURD 14. TOTAI 15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGNA	M FOR ELE FACTUREF - NO. OF O EN SAMPL - NUMBER - NUMBER	VATION E RS DESIG VI VER- ES TAKEN CORE BO UND WAT STAR OF HOLE COVERY I NSPECTO BOX OR SAMPLE NG F	ATUM SHOWN BM or MSL MLLW NATION OF DRILL DISTURBED UNDISTURBED VI 2 0 VI 2 0 VI 2 VI 2
N 60, DRILLING AG HOLE NO.(As and file number) NAME OF DF DIRECTION C VERTIC/ THICKNESS DEPTH DRILL TOTAL DEPT ELEVATION C -40.5	021.0 E 2,2	197,978.0 1 DISTRICT WH12-V-18 Smith D ==== DEG.FROM VERTICAL N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	12. MANU 13. TOTAI BURD 14. TOTAI 15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGNA	FACTUREF NO. OF O EN SAMPL NUMBER TION GRC HOLE CORE RE CORE RE RECOVERY 9	RS DESIG VER- ES TAKEN CORE BO UND WAT STAR OF HOLE COVERY NSPECTO BOXOR SAMPLE NG	INTERVISE INTERVISED INTERVISED INTERVISED UNDISTURBED UNDISTURBED INTERVISED
HOLLING AS and file number; NAME OF DR DIRECTION C VERTIC/ THICKNESS DEPTH DRILL TOTAL DEPT COLUMENT a 2 -40.5	VILMINGTON s shown on drawing title r) RILLER Talon S OF HOLE AL INCLINEI OF WATER COLUMN LEO INTO ROCK TH OF HOLE DEPTH Legend S8.0 40.0	I DISTRICT WH12-V-18 Smith D DEG. FROM VERTICAL N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	13. TOTAI BURD 14. TOTAI 15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGN/	NO. OF O EN SAMPL NUMBER ATION GRC HOLE CORE RE CORE RE CORE RE RECOVERY 9	VI VER- ES TAKEN CORE BO UND WAT STAR OF HOLE COVERY NSPECTO BOXOR SAMPLE NO F	Dracore Snell DISTURBED UNDISTURBED VIZE 0 VIZE 0 TER N/A FEP COMPLETED 7/12/12 7/12/12 0.0 7/12/12 FOR BORING N/A VR REMARKS (Drilling time, water loss, dispth of weathering, etc., f significant) 9
HOLE NO.(As and file number) NAME OF DR DIRECTION (VERTIC/ THICKNESS DEPTH DRILL DEPTH DRILL TOTAL DEPT TOTAL DEPT LEVATION C (MLLW) a 3 4 4 4 1.9	shown on drawing tile	WH12-V-18 Smith	BURD 14. TOTAI 15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGNA	EN SAMPL NUMBER TION GRC HOLE ATION TOP CORE RE TURE OF I	ES TAKEN CORE BO UND WAT STAR OF HOLE COVERY NSPECTC BOX OR SAMPLE NO. f	1 2 : 0 XES 0 0 FER N/A 1 IED 7/12/12 7/12/12 O.0 0 0 FOR BORING N/A N R R 1 (Drilling time, water loss, depth of weathering, etc., f significant) 9
ANAME OF DR DIRECTION O VERTIC/ THICKNESS DEPTH DRILL TOTAL DEPT LLEVATION (MLLW) a 3 4 -40.5	RILLER Talon S OF HOLE AL INCLINE OF WATER COLUME LED INTO ROCK TH OF HOLE DEPTH Legend S8.0 40.0	Smith Deg. FROM VERTICAL N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	15. ELEV/ 16. DATE 17. ELEV/ 18. TOTAI 19. SIGNA	ATION GRC HOLE ATION TOP CORE RE TURE OF I	OF HOLE COVERY NSPECTO BOX OR SAMPLE NO. f	TER N/A TPD COMPLETED 7/12/12 0.0 FOR BORING N/A PR (Drilling time, weater loss, depth of weathering, etc., f significant) 9
DIRECTION C VERTIC/ THICKNESS DEPTH DRILL TOTAL DEPT ELEVATION C (MLW) a 2 -40.5	OF HOLE AL INCLINE OF WATER COLUM LED INTO ROCK TH OF HOLE DEPTH (feet) 38.0 40.0	D DEG. FROM VERTICAL N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	16. DATE 17. ELEV/ 18. TOTAI 19. SIGN/ ,	HOLE ATION TOP CORE RE TURE OF I %CORE RECOVERY 9	OF HOLE COVERY NSPECTO BOX OR SAMPLE NO. f	TED COMPLETED 7/12/12 0.0 FOR BORING N/A R (Drilling time, water loss, depth of weathering, etc., f significant)
-41.9	AL INCLINE OF WATER COLUM LED INTO ROCK TH OF HOLE DEPTH (ref) 38.0 40.0	N 40.5' N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	17. ELEV/ 18. TOTAI 19. SIGN/ ,	CORE RE TURE OF I %CORE RECOVERY	OF HOLE COVERY I NSPECTO BOX OR SAMPLE NO. f	O.0 FOR BORING N/A IR (Drilling time, weter loss, depth of weathering, stc., f significant) 9
-41.9	OF WATER COLUME LED INTO ROCK TH OF HOLE DEPTH Legend b 38.0 40.0	N 40.5' 0.0' 47.9' CLASSIFICATION OF MATERIALS (Description) d	18. TOTAI 19. SIGNA ,	CORE RE TURE OF I %CORE RECOVERY 9	COVERY I NSPECTO BOX OR SAMPLE NO. f	FOR BORING N/A PR (Drilling time, water loss, depth of weathering, etc., f significant) 9
-41.9	TH OF HOLE DEPTH Legend c 38.0	47.9 CLASSIFICATION OF MATERIALS (Description) d	19. SIGNA	%CORE RECOVERY 9	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., f significant) g
40.52	A0.0	CLASSIFICATION OF MATERIALS (Description) d	3	%CORE RECOVERY 9	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) 9
40.54	40.0					
-41.9		0.0° TO 40.5° WATER OCEAN BOTTOM @40	. <u>.5'</u>			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of wate
41.9		with gravel.	iu,		1	for tide such that Top of Hole is 0.0 EL MLLW.
2	42.0 44.0 44.0	GW, Dark to light gray, we graded sandy gravel.	əll		<u>41.9</u>	
2	46.0 0 0				2	VIBRACORE BORING From 0.0' to 11.60' Ran 20' Rec: 20' Top of vibracore soil sample is logged as
2	52.0	BOTTOM OF HOLE AT 4 SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH TH UNIFIED SOIL CLASSIFICATION SYST	IN HE EM		<u> 47.9 </u>	beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SC 2 GW-GM Soils are Lab Classified in Accordance with ASTM-D2487
Ę	56.0					Terminated hole at refusa or predetermined depth at 7.4' below ocean bottom

/ibratory Drilling Lo		INSTALLA					
A PROJECT WILMINGTON HARBOR 2. LOCATION			WILMINGTON DISTRICT OF 1 SHEET 10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE 11. DATUM FOR ELEVATION DATUM SHOWN BM OF MSL MIT W				
4. HOLE NO.(As shown on drawing title and file number) WH12-V-19			BURDEN SAMPLES TAKEN UISTORBED UNDISTORBED				
5. NAME OF DRILLER Talon Smith			14. TOTAL NUMBER CORE BOXES 0				
DIRECTION OF HOLE	16. DATE HOLE STARJED COMPLETED						
	-17. ELEVA	: //12/12 //12/12 17. ELEVATION TOP OF HOLE 0.0					
7. THICKNESS OF WATER COLUMN 36.3'			18. TOTAL CORE RECOVERY FOR BORING N/A				
3. DEPTH DRILLED INTO ROCK 0.0' 3. TOTAL DEPTH OF HOLE 45.2'			19. SIGNATURE OF INSPECTOR				
ELEVATION DEPTH Legend	CLASSIFICATION OF MATERIAL	s ,	%CORE	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of		
(MLLVV) (feet) c	(Description) d		8 B	NO. f	weathering, etc., if significant) g		
	-				Time begin vibracoring:		
34.0	-						
					Soils Field Classified by		
		_			Engineer		
	0.0' TO 36.3' WATEF	≺					
-36.3 36.0	OCEAN BOTTOM @36	5.3'			defined as surface of wate		
	SW, Gray, well graded			1	and compensation is made		
					Hole is 0.0 EL MLLW.		
	0 3						
				1			
-0000							
	0						
-40.8	SP Light gray, poorly			-40.8-			
	graded sand.			2	VIBRACORE BORING		
<u>-41.7</u> 42 0	GW, Light gray, well grad	led		—4 1./—	Ran 20' Rec: 20'		
	gravel.						
_				3	Top of vibracore soil		
					beginning at Ocean		
-44.3 44.0				44.2	Bottom. When Run is		
-	GP, Light gray, poorly			44.3	difference is depicted as		
-45.2	graded gravel.			45.2	Assumed Not Recovered.		
<u></u>	BOTTOM OF HOLE AT	45.2'			LAB CLASSIFICATION		
46.0	SOILS ARE FIELD				Jar		
	VISUALLY CLASSIFIED	IN HE			1 SW		
	UNIFIED SOIL				2 SP		
	CLASSIFICATION SYST	EM			3 GW-GM		
48.0							
					Soils are Lab Classified in		
					Accordance with ASTM-D2487		
50.0							
					Terminated hole at refusa		
					or predetermined depth at		
52 0					o.900000000000000001' below		
<u>-</u>							
	EVIOUS EDITIONS ARE OBSOLETE	PR	DJECT	1	HOLE NO.		
MAR 71			WI	MINGTO	ON HARBOR WH12-V-19		

/ibrator	y Drilling Log	DIVISION	INSTALLA		IGTON	N DISTRICT OF 1 SHEET				
			10. SIZE A	ND TYPE (OF BIT	4" DIA VIBRACORE				
LOCATION			11. DATUN	M FOR ELE	VATION D	DATUM SHOWN <i>BM or MSL</i> MLLW				
N 59	9,252.0 E 2,1 AGENCY	297,643.0	12. MANU	FACTURE	RS DESIGI	NATION OF DRILL				
		N DISTRICT	13. TOTAL	LNO. OF O	VER-	DISTURBED UNDISTURBED				
and file numb	xa shown on the wing the	WH12-V-20	BURDEN SAMPLES TAKEN : 3 : 0							
. NAME OF I	Talon	Smith	15. ELEVA	15. ELEVATION GROUND WATER N/A						
. DIRECTION	N OF HOLE	DEG. FROM VERTICAL	16. DATE	HOLE	STAR	TED COMPLETED 7/12/12 7/12/12				
		ED 1N 41.6'	17. ELEV#	ATION TOP	OF HOLE	0.0				
. DEPTH DR	ILLED INTO ROCK	0.0'	18. TOTAL 19. SIGNA	L CORE RE	COVERY I	FOR BORING N/A				
. TOTAL DEI	PTH OF HOLE	51.0'	,		BOXOR	PEMARKS				
ELEVATION (MLLW) B	DEPTH (feet) c b c	CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY 8	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) 9				
-41.6	40.0	0.0' TO 41.6' WATE OCEAN BOTTOM @4 SW, Light gray, well grad sand. SP, Tannish gray, poorly graded sand.	२ 1.6' led		41.6 1 44.4	Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of wate and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.				
-50.4	48.0 50.0	GW , Tan to gray, well			2 	VIBRACORE BORING From 0.0' to 12.80' Ran 20' Rec: 20' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.				
51.0		BOTTOM OF HOLE AT	51'		01	Jar				
	52.0	SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH T UNIFIED SOIL CLASSIFICATION SYS ⁻	IN HE ſEM			Number Classification 1 SW 2 SP 3 SW-SM Soils are Lab Classified ir Accordance with ASTM-D2487				
	56.0					COMPLETION NOTE: Terminated hole at refusa or predetermined depth at 9.4' below ocean bottom				
ENG FO	RM 1836 PREV	IOUS EDITIONS ARE OBSOLETE	PR	JJECT						
MAR 71				WILI	MINGTO	IN HARBOR WH12-V-20				

/ibrator	y Drilling L	Log SAD		WILMIN	IGTON	NDISTRICT OF 1 SHEFT			
			10. SIZE /	AND TYPE	OF BIT	4" DIA VIBRACORE			
LOCATION			11. DATU	M FOR ELE	VATION E	DATUM SHOWN <i>BM or MSL</i> MILLW			
N 6'	1,845.1 E	2,299,196.1	12. MANU	12. MANUFACTURERS DESIGNATION OF DRILL Vibracore Spell					
	WILMING								
. HOLE NO. and file num	(As shown on drawing ber)	^{9 ttle} WH13-V-01	BURD		ES TAKEN	$\frac{1}{2}$			
. NAME OF	DRILLER Lest	ter Gavohf	15. ELEV/	ATION GRO	UND WAT	rer N/A			
. DIRECTIO	N OF HOLE		16. DATE	HOLE	STAR	TED COMPLETED 2/18/13			
		CLINED	17. ELEV/	ATION TOP	OF HOLE	0.0			
. THICKNES		OLUMN 36.4'	18. TOTA	L CORE RE	COVERY	FOR BORING N/A			
. TOTAL DE	PTH OF HOLE	40.0'	19. SIGN/	ATURE OF	INSPECTO)R			
ELEVATION (MLLW) a	DEPTH (feet) Legen b C	nd CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY 9	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)			
-36.4 -37.9 -38.2 -39.0 -39.2 -40.0	34.0	0.0' TO 36.4' WATEI OCEAN BOTTOM @3 SP, Tannish brown, poor graded sand, with gravel ock fragments, rock @ -37.9' to -38.2'. SP, Grayish brown, coar sand. GP, Light gray gravel wit rock fragments, rock @ -39.0' to -39.2'. SP, Grayish brown, coar sand. BOTTOM OF HOLE AT SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH T UNIFIED SOIL CLASSIFICATION SYS ⁻	R 5.4' ly h se, h Se, IN HE rEM			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of Hole is 0.0 EL MLLW. <u>VIBRACORE BORING</u> From 0.0' to ' Ran ' Rec: ' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SM 2 SW Soils are Lab Classified in Accordance with ASTM-D2487 Terminated hole upon refusal depth of 40' below ocean bottom			
	- - 		PR	DJECT		HOLE NO.			
MAR 71		TREATOUS EDITIONS ARE OBSULETE		WIL	MINGTO	ON HARBOR WH13-V-01			

/ibratory Drilling Lo		INSTALLA		GTON	NDISTRICT OF 1 SHEET		
		10. SIZE A	ND TYPE (OF BIT	4" DIA VIBRACORE		
		11. DATUN	I FOR ELE	VATION E	DATUM SHOWN <i>BM or MSL</i> MLLW		
N 61,362.0 E 2	,298,355.0	12. MANU	FACTURE	RS DESIG			
		13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED					
and file number)	WH13-V-02	BURDI 14. TOTAL	EN SAMPL	ES TAKEN CORE BO	v <u>i 1 : U</u> IXES ()		
. NAME OF DRILLER Lester	Gavghf	15. ELEVATION GROUND WATER N/A					
DIRECTION OF HOLE	DEG. FROM VERTICAL	16. DATE	HOLE	STAR	Z/18/13 COMPLETED 2/18/13		
		17. ELEVA	TION TOP	0.0			
DEPTH DRILLED INTO ROCK	0.0'	18. TOTAL 19. SIGNA	TURE OF I	NSPECTO	FOR BORING N/A		
	46.0'	<u> </u>	N CODE	BOXOR	REMARKS		
(MLLW) (feet) c a b c	(Description) d	5	RECOVERY e	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) 9		
-40.0 40.0	0.0' TO 40' WATER OCEAN BOTTOM @4 SP , Gray, sand, with grav trace shell fragments.	<u>0'</u> /el,			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.		
42.0				1	VIBRACORE BORING		
-46.0				46	Ran' Rec: '		
46.0	BOTTOM OF HOLE AT SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH TI UNIFIED SOIL CLASSIFICATION SYST	46' IN HE EM			Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.		
50.0					LAB CLASSIFICATION Jar <u>Number Classification</u>		
					1 SP-SM Soils are Lab Classified in		
52.0					Accordance with ASTM-D2487		
54.0					Terminated hole upon refusal depth of 46' below ocean bottom		
56.0							
	1		1		l		

ASTM D 422-63 (2007)

Moisture Content of Passing 3/4" Material Water Content of Retained 3/4" Material	
Tare No. 156 Tare No.	NA
Wgt.Tare + Wet Specimen (gm) 656.32 Wgt.Tare + Wet Specimen (gm)	NA
Wgt.Tare + Dry Specimen (gm) 558.49 Wgt.Tare + Dry Specimen (gm)	NA
Weight of Tare (gm) 238.79 Weight of Tare (gm)	NA
Weight of Water (gm) 97.83 Weight of Water (gm)	NA
Weight of Dry Soil (gm) 319.70 Weight of Dry Soil (gm)	NA
Moisture Content (%) 30.6 Moisture Content (%)	NA
Wet Weight -3/4" Sample (gm) NA Weight of the Dry Specimen (gm) 31	ə.70
Dry Weight - 3/4" Sample (gm) 287.0 Weight of minus #200 material (gm) 33	2.67
Wet Weight +3/4" Sample (gm) NA Weight of plus #200 material (gm) 28"	7.03
Dry Weight + 3/4" Sample (gm) 0.00	
Total Dry Weight Sample (gm) NA	

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	4.41	1.4	1.4	98.6	98.6
3/8"	9.50	5.69	1.8	3.2	96.8	96.8
#4	4.75	12.83	4.0	7.2	92.8	92.8
#10	2.00	41.48	13.0	20.1	79,9	79.9
#20	0.850	67.28	21.0	41.2	58.8	58.8
#40	0.425	59.16	18.5	59.7	40.3	40.3
#60	0.250	54.36	17.0	76.7	23.3	23.3
#140	0.106	36.27	11.3	88.0	12.0	12.0
#200	0.075	5.55	1.7	89.8	10.2	10.2
Pan		32.67	10.2	100.0		

	Tested By	AG	Date	6/17/13	Checked By	am	Date	6-18-13	
page 2 of 2		DCN: CT-S3C D	ATE 6-25-98 REVI	SION: 2 Z:\20	013 PROJECTS\2013-677 L	ISACE whip\[2013-677-01	-03 SIEVON RE	EV 4 wHeader.xls] She	et1

WILMIN			10 0 7 7						
	IGTON HARBO	DR	11. DATU	M FOR ELE		4 DIA VIBRACORE			
LOCATION	,737.0 E 2.2	97,624.0	10 644.64						
DRILLING			12. MANU		Vi	bracore Snell			
HOLE NO.	(As shown on drawing title		13. TOTAI BURD	l no. Of o En sampli	VER- ES TAKEN	DISTURBED UNDISTURBED			
and file numb NAME OF	ber) · · · · · · · · · · · · · · · · · · ·	VVH 13-V-U3	14. TOTAI	14. TOTAL NUMBER CORE BOXES 0					
		Bavghf	15. ELEV/	ATION GRO		TER N/A			
		DEG. FROM VERTICAL	IO. DATE			2/18/13 2/18/13			
. THICKNES	S OF WATER COLUMN	39.4'	17. ELEVA 18. TOTAL						
DEPTH DR	RILLED INTO ROCK	0.0'	19. SIGN/	TURE OF I	NSPECTO	DR			
ELEVATION			,	%CORE	BOX OR	REMARKS			
(MLLW) a	(feet) Legend b C	(Description) d	, 	RECOVERY	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant)			
-39.4	38.0	0.0' TO 39.4' WATER OCEAN BOTTOM @39	.4'	_		Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of water			
	40.0	sand, some shell fragmer	nts.		1	for tide such that Top of Hole is 0.0 EL MLLW.			
-50.8	44.0	SP-SM, poorly graded sar with silt.	nd,		43.6 2	VIBRACORE BORING From 0.0' to ' Ran ' Rec: ' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar LAB CLASSIFICATION Jar 1 SW-SM 2 SM 3 SP-SM			
-52.4	52.0	GW-GM, well graded grav with silt.	rel,		3 52.4	Soils are Lab Classified in Accordance with ASTM-D2487			
	54.0	SOILS ARE FIELD VISUALLY CLASSIFIED ACCORDANCE WITH TH UNIFIED SOIL CLASSIFICATION SYST	IN IE EM			Terminated hole upon refusal depth of 52.4' below ocean bottom			

.

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0 2013-677-0	1 1-04	B D S S	oring No. oepth (ft) ample No. oil Color	WH-13-V-3 39.4-43.6 1 GRAY	
Moisture Content of Pa	assing 3/4" M	aterial	Water Conten	t of Retained 3	3/4" Material	
Tare No.		158	Tare No.			NA
Wgt.Tare + Wet Spec	cimen (gm)	710.22	Wgt.Tare + V	Net Specimen	(gm)	NA
Wgt.Tare + Dry Spec	imen (gm)	581.23	Wgt.Tare + [Dry Specimen	(gm)	NA
Weight of Tare (gm)		238.43	Weight of Ta	are (gm)		NA
Weight of Water (gm))	128,99	Weight of W	ater (gm)		NA
Weight of Dry Soil (gr	n)	342.80	Weight of Dr	y Soil (gm)		NA
Moisture Content (%	6)	37.6	Moisture Co	ontent (%)		NA
Wet Weight -3/4" Sar	nple (gm)	NA	Weight of the	e Dry Specime	n (gm)	342.80
Dry Weight - 3/4" Sar	nple (gm)	316.8	Weight of mi	nus #200 mate	erial (gm)	26.03
Wet Weight +3/4" Sa	mple (gm)	NA	Weight of plu	us #200 materi	ial (gm)	316.77
Dry Weight + 3/4" Sa	mple (gm)	0.00				
Total Dry Weight San	nple (gm)	NA				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	19.51	5.7	5.7	94.3	94.3
#10	2.00	62.61	18.3	24.0	76.0	76.0
#20	0.850	95.13	27.8	51.7	48.3	48.3
#40	0.425	71.50	20.9	72.6	27.4	27.4
#60	0.250	39.22	11.4	84.0	16.0	16.0
#140	0.106	24.57	7.2	91.2	8.8	8.8
#200	0.075	4.23	1.2	92.4	7.6	7.6
Pan		26.03	7.6	100.0	. =	-

	Tested By	AG	Date	6/18/13	Checked By	Gen	Date 6	1-18-13
page 2 of 2		DCN: CT-S3C DA	ATE 6-25-98 REVI	SION: 2 Z:\2	2013 PROJECTS\2013-677	USACE whip\[2013-6	77-01-04 SIEVON RE	V 4 wHeader.xls]Sheet1

CC =

1.4

SIEVE ANALYSIS ASTM D 422-63 (2007)

Clie Clie Proj Lab	nt nt Ref ject No ID	ferer D.	ice	U 20 20	SAC /HIF 013- 013-	СЕ 677- 677-	01 01-04							Boring Depth Samp Soil C) No (ft) le N oloi). Io.	V 3 1 G	VH- 9.4	13- -43	V-3 .6		
		T						SI		ΔΝΔΙ	YSIS						 НҮГ	ORC	OME	TE	R	
US	cs				gr	ave			Ī			sand	1				 		silt	and	d cla	ay
	100 ∏		12" ┬Ŷ	6"	3" ∏Ĥ	┯┍┿	3/4"	3/8' ◆1	' #4	#10	#20	#4	0	#140	#20	0		1				
	90								R								 					
	80		-							N												
ıt	70																 					
er By Weigl	60 50										X					-				-		
Percent Fin	40																					
	30						-					X										
	20			-									Y									
	10													X	~							
	1000)		1	00	teres (construction		10	P	article	1 Diame	ter (m	nm)	0	.1		 0	.01				0.001

D60 =**USCS Symbol** sw-sm, ASSUMED 1.2 D30 = CU = USCS Classification WELL-GRADED SAND WITH SILT 0.5 10.0 D10 = 0.1 Date 6-18-13 6/18/13 Checked By am Tested By AG Date Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-04 SIEVON REV 4 wHeader.xls]Sheet1 DCN: CT-S3C DATE 6-25-98 REVISION: 2 page 1 of 2

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0 2013-677-0	1 1-06		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-3 50.8-52.4 3 GRAY	
Moisture Content of Pa	assing 3/4" M	aterial	Water (Content of Retained 3	/4" Material	
Tare No.		161	Tare N	lo.		NA
Wgt.Tare + Wet Spee	cimen (gm)	715.08	Wgt.Ta	are + Wet Specimen	(gm)	NA
Wgt.Tare + Dry Spec	imen (gm)	641.83	Wgt.Ta	are + Dry Specimen ((gm)	NA
Weight of Tare (gm)		237.92	Weigh	t of Tare (gm)		NA
Weight of Water (gm)	73.25	Weigh	t of Water (gm)		NA
Weight of Dry Soil (gr	m)	403.91	Weigh	t of Dry Soil (gm)		NA
Moisture Content (%	6)	18.1	Moistu	ure Content (%)		NA
Wet Weight -3/4" Sar	mple (am)	NA	Weigh	t of the Dry Specime	n (am)	403.91
Drv Weight - 3/4" Sar	nole (am)	359.8	Weigh	t of minus #200 mate	erial (am)	44.12
Wet Weight +3/4" Sa	mple (gm)	NA	Weigh	t of plus #200 materi	al (gm)	359.79
Dry Weight + 3/4" Sa	mple (gm)	0.00		•		
Total Dry Weight San	nple (gm)	NA				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percer	t Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	5.48	1.4	1.4	98.6	98.6
3/8"	9.50	12.39	3.1	4.4	95.6	95.6
#4	4.75	73.85	18.3	22.7	77.3	77.3
#10	2.00	111.84	27.7	50.4	49.6	49.6
#20	0.850	51.82	12.8	63.2	36.8	36.8
#40	0.425	35.46	8.8	72.0	28.0	28.0
#60	0.250	31.30	7.7	79.8	20.2	20.2
#140	0.106	31.29	7.7	87.5	12.5	12.5
#200	0.075	6.36	1,6	89.1	10.9	10.9
Pan	-	44.12	10.9	100.0	-	-

	Tested By	AG	Date	6/18/1	3	Checked By	Gan	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVIS	ION: 2	Z:\2013	3 PROJECTS\2013-677 U	SACE whip\[2013-677-0	1-06 SIEVON I	REV 4 wHeader.x	ls]Sheet1

Client USACE Boring No. WH-13-V-3 **Client Reference** WHIP Depth (ft) 50.8-52.4 Sample No. Project No. 2013-677-01 3 Soil Color GRAY Lab ID 2013-677-01-06

USCS Classification POORLY GRADED SAND WITH SILT AND GRAVEL

 Tested By
 AG
 Date
 6/18/13
 Checked By
 Cash
 Date
 6-1813

 page 1 of 2
 DCN: CT-S3C DATE 6-25-98 REVISION: 2
 Z:12013 PROJECTS12013-677 USACE while (2013-677-01-06 SIEVON REV 4 wHeader.xks)Sheet1

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0 ⁻ 2013-677-0 ⁻	1 1-05		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-3 43.6-50.8 2 GRAY			
Moisture Content of Pa	assing 3/4" M	aterial	Water Con	tent of Retained 3/	/4" Material			
Tare No.		154	Tare No.			NA		
Wgt.Tare + Wet Spe	cimen (gm)	737.65	Wgt.Tare	Wgt.Tare + Wet Specimen (gm)				
Wgt.Tare + Dry Spec	cimen (gm)	642.73	Wgt.Tare	Wgt.Tare + Dry Specimen (gm)				
Weight of Tare (gm)		237.52	Weight of	Tare (gm)		NA		
Weight of Water (gm)	94.92	Weight of	NA				
Weight of Dry Soil (g	m)	405.21	Weight of	Dry Soil (gm)		NA		
Moisture Content (%	%)	23.4	Moisture	Content (%)		NA		
Wet Weight -3/4" Sar	mple (gm)	NA	Weight of	the Dry Specimer	n (gm)	405.21		
Dry Weight - 3/4" Sar	mple (gm)	333.5	Weight of	minus #200 mate	rial (gm)	71.76		
Wet Weight +3/4" Sa	mple (gm)	NA	Weight of plus #200 material (gm) 33					
Dry Weight + 3/4" Sa	mple (gm)	0.00						
Total Dry Weight Sar	nple (gm)	NA						

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	3.54	0.9	0.9	99.1	99.1
#10	2.00	25.37	6.3	7.1	92.9	92.9
#20	0.850	76.89	19.0	26.1	73.9	73.9
#40	0.425	80.15	19.8	45.9	54.1	54.1
#60	0.250	72.59	17.9	63.8	36.2	36.2
#140	0.106	64.61	15.9	79.7	20.3	20.3
#200	0.075	10.30	2.5	82.3	17.7	17.7
Pan	-	71.76	17.7	100.0	-	=

	Tested By	AG	Date	6/18/	13	Checked By	Æm	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVI	SION: 2	Z:\201	3 PROJECTS\2013-677	7 USACE whip\[2013-67	7-01-05 SIEVON	REV 4 wHeader.xls]	Sheet1

6-18-12

Gem

Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-05 SIEVON REV 4 wHeader.xls]Sheet1

Date

SIEVE ANALYSIS ASTM D 422-63 (2007)

WH-13-V-3 Client USACE Boring No. Depth (ft) **Client Reference** WHIP 43.6-50.8 Sample No. Project No. 2013-677-01 2 Lab ID 2013-677-01-05 Soil Color GRAY HYDROMETER SIEVE ANALYSIS USCS gravel sand silt and clay 12" #10 #20 6" 3" 3/4" 3/8" #4 #40 #140 #200 100 90 80 70 Percent Finer By Weight 60 50 40 30 20 10 0 1000 100 10 0.1 0.01 0.001 1 Particle Diameter (mm) **USCS Symbol** sm, ASSUMED **USCS Classification SILTY SAND**

2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 - www.geotechnics.net

Checked By

6/18/13

Tested By

page 1 of 2

AG

Date

DCN: CT-S3C DATE 6-25-98 REVISION: 2

√ibrator	y Drilling Log		INSTALLA	ATION				
. PROJECT			10. SIZE /			4" DIA VIBRACORE		
LOCATION			11. DATU	M FOR ELE	VATION D	ATUM SHOWN <i>BM or MSL</i>		
N 59	9,964.0 E 2,2	296,771.0	12. MANU	FACTURE	R'S DESIG	NATION OF DRILL		
DRILLING	WILMINGTON	N DISTRICT	VIDracore Shell 13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED					
 HOLE NO. and file num 	(As shown on drawing title ber)	WH13-V-04	BURD	EN SAMPL	ES TAKEN	$1 \stackrel{:}{:} 2 \stackrel{:}{:} 0$		
. NAME OF	DRILLER	Gavohf	15. ELEVATION GROUND WATER N/A					
DIRECTIO	N OF HOLE	Sargin	16. DATE HOLE STARTED COMPLETED 2/18/13					
		DEG. FROM VERTICAL	17. ELEV	ATION TOP	OF HOLE	0.0		
		<u>∾ 26.4'</u>	18. TOTA	L CORE RE	COVERY I	FOR BORING N/A		
). TOTAL DE	PTH OF HOLE	44.7	19. SIGN/	ATURE OF I	NSPECTO	R		
ELEVATION (MLLW) a	DEPTH (feet) Legend b C	CLASSIFICATION OF MATERIAI (Description) d	_S	%CORE RECOVERY 8	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) g		
	24.0	0.0' TO 26.4' WATE	R			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer		
-26.4	26.0	OCEAN BOTTOM @2 SP, Grayish tan poorly graded fine sand.	6.4'	-	—26.4—	NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.		
	28.0				1			
-34 4	32.0				24.4	VIBRACORE BORING From 0.0' to ' Ran ' Rec: ' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is		
	36.0	SP-SC, poorly graded fir sand, with clay.	ie			difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SM 2 ML		
	38.0				2	Soils are Lab Classified in Accordance with ASTM-D2487		
	40.0 40.0					refusal depth of 44.7' below ocean bottom		
	NRM 1836 DREV		PR	NECT		LHOLE NO		

Wilmington Harbor Improvements Project	34
Appendix C - Geotechnical Engineering	

PROJECT	VILMIN	GION H	ARBUR	WILMIN	IGTON	DISTRICT	
ELEVATION (MLLW)	DEPTH (feet)	Legend	CLASSIFICATION OF MATERIALS (Description)	%CORE RECOVERY	BOX OR SAMPLE NO	REN (Drilling time, w weathering e	ARKS ater loss, depth of to, if significant)
а	ь —	-	a SB SC paperly graded fine	e	f		9
	44.0		sand, with clay. (continued		2		
-44 7	_	• 0	from previous page)				
	-		BOTTOM OF HOLE AT 44.7'				
	-						
	46.0		VISUALLY CLASSIFIED IN				
	10.0		ACCORDANCE WITH THE				
	-		CLASSIFICATION SYSTEM				
	-						
	48 0						
	-0.0						
	-						
	-						
	50.0-						
	50.0 _						
	-						
	-						
	52 0-						
	JZ.U _						
	-						
	E4 0						
	04.0 _ -						
	-						
	-						
	50.0						
	56.0_						
	-						
	-						
	58.0_						
	-						
	-						
	6U.U _						
	-						
	-						
	02.U						
	-						
	-						
	64 0-						
	04.U _						
	66.0						
	_ U.00 _						
	-						
	-					1.	
ENG FC	78 MN	336 PREV	IOUS EDITIONS ARE OBSOLETE	PROJECT			

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0 ⁷ 2013-677-0 ⁷	1 1-08		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-4 34.4-44.7 2 GRAY			
Moisture Content of Pas	sing 3/4" M	aterial	Water Con	tent of Retained	3/4" Material			
Tare No.		842	Tare No.			NA		
Wgt.Tare + Wet Speci	men (gm)	695.91	Wgt.Tare	+ Wet Specimen	ı (gm)	NA		
Wgt.Tare + Dry Specin	nen (gm)	549.80	Wgt.Tare	Wgt.Tare + Dry Specimen (gm)				
Weight of Tare (gm)	0,	255.81	Weight of	Weight of Tare (gm)				
Weight of Water (gm)		146.11	Weight of	Weight of Water (gm)				
Weight of Dry Soil (gm)	293.99	Weight of	Dry Soil (gm)		NA		
Moisture Content (%)		49.7	Moisture	Moisture Content (%)				
Wet Weight -3/4" Sam	ple (gm)	NÁ	Weight of	the Dry Specime	en (gm)	293.99		
Dry Weight - 3/4" Sam	ple (gm)	119.8	Weight of	minus #200 mate	erial (gm)	174.16		
Wet Weight +3/4" Sam	ple (gm)	NA	Weight of plus #200 material (gm) 119					
Dry Weight + 3/4" Sam	ple (gm)	0.00						
Total Dry Weight Sam	ole (gm)	NA						

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	. ,	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	0.30	0.1	0.1	99.9	99.9
#10	2.00	5.20	1.8	1.9	98.1	98.1
#20	0.850	10.55	3.6	5.5	94.5	94.5
#40	0.425	11.07	3.8	9.2	90.8	90.8
#60	0.250	16.21	5.5	14.7	85.3	85.3
#140	0.106	48.30	16.4	31.2	68.8	68.8
#200	0.075	28.20	9.6	40.8	59.2	59.2
Pan		174.16	59.2	100.0		-

						1 S.			
	Tested By	AG	Date	6/17/13	3 Checked By	Gen	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVIS	SION: 2 Z	:\2013 PROJECTS\2013-677	USACE whip\[2013-677-0	1-08 SIEVON F	REV 4 wHeader.xis]	Sheet1

ader.xlsISheet1

SIEVE ANALYSIS ASTM D 422-63 (2007)

2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 - www.geotechnics.net

Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-08 SIEVON REV 4 whe

DCN: CT-S3C DATE 6-25-98 REVISION: 2

page 1 of 2

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-07 2013-677-07	-07		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-4 26.4-34.4 1 GRAY				
Moisture Content of P	assing 3/4" M	aterial	Water Cont	ent of Retained 3/	/4" Material				
Tare No.		153	Tare No.			NA			
Wgt.Tare + Wet Spe	cimen (gm)	646.55	Wgt.Tare	+ Wet Specimen	(gm)	NA			
Wgt.Tare + Dry Spec	cimen (gm)	546.43	Wgt.Tare	Wgt.Tare + Dry Specimen (gm)					
Weight of Tare (gm)		240.46	Weight of	Tare (gm)		NA			
Weight of Water (gm	ı)	100.12	Weight of	NA					
Weight of Dry Soil (g	m)	305.97	Weight of	Dry Soil (gm)		NA			
Moisture Content (9	%)	32.7	Moisture	Content (%)		NA			
Wet Weight -3/4" Sa	mple (gm)	NA	Weight of	the Dry Specimer	n (gm)	305.97			
Dry Weight - 3/4" Sa	mple (gm)	256.0	Weight of	minus #200 mate	rial (gm)	50.01			
Wet Weight +3/4" Sa	mple (gm)	NA	Weight of plus #200 material (gm) 255						
Dry Weight + 3/4" Sa	mple (gm)	0.00							
Total Dry Weight Sar	mple (gm)	NA		-18					

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	0.00	0.0	0.0	100.0	100.0
#10	2.00	1.11	0.4	0.4	99.6	99.6
#20	0.850	4.73	1.5	1.9	98.1	98.1
#40	0.425	10.99	3.6	5.5	94.5	94.5
#60	0.250	19.46	6.4	11.9	88.1	88.1
#140	0.106	188.33	61.6	73.4	26.6	26.6
#200	0.075	31.34	10.2	83.7	16.3	16.3
Pan	. .	50.01	16.3	100.0	-	- 1

	Tested By	AG	Date	6/17/ ⁻	13	Checked By	GEM	Date	6-18-13
page 2 of 2		DCN: CT-S3C DA	ATE 6-25-98 REVISI	ION: 2	Z:\201	13 PROJECTS\2013-677	USACE whip\[2013-677	7-01-07 SIEVON F	REV 4 wHeader.xls]Sheet1

/ibrator	y Drilling Log	SAD	INSTALLA	tion VILMIN	IGTON	NDISTRICT OF 2 SHEFT		
		0R	10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE					
LOCATION			11. DATUN	I FOR ELE	VATION D	ATUM SHOWN <i>BM or MSL</i> MLLW		
N 58	3,838.0 E 2,2 AGENCY	296,549.0	12. MANU	FACTURE	R'S DESIGI			
	WILMINGTO	N DISTRICT	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED					
and file numb	(As shown on drawing title ber)	WH13-V-05	BURDI	EN SAMPL	ES TAKEN CORE BO	<u>1:5:0</u> XES 0		
NAME OF	Lester (Gavqhf	15. ELEVA	TION GRO	OUND WAT	ER N/A		
DIRECTIO	N OF HOLE		16. DATE	HOLE	STAR	TED COMPLETED 2/18/13		
VERT		ED	17. ELEVA	TION TOP	OF HOLE	0.0		
DEPTH DE		1 <u>N 17.9'</u>	18. TOTAL	CORE RE	COVERY	FOR BORING N/A		
TOTAL DE	PTH OF HOLE	35.3'	19. SIGNA	TURE OF I	INSPECTO	R		
ELEVATION (MLLW) a	DEPTH (feet) c b c	CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, weter loss, depth of weathering, etc., if significant) 9		
	16.0	0.0' TO 17.9' WATE	2			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer		
-17.9	18.0	OCEAN BOTTOM @1 SW-SM, Dark gray, well graded sand, with silt, tra shell fragments	7.9' ace		—17.9—	NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of		
-22.1	20.0	SD-SM Lightton poortu			1 	I IGIE IS U.U EL IVILLVV.		
	24.0	graded sand, with silt.			2	VIBRACORE BORING From 0.0' to ' Ran ' Rec: '		
-24.6	26.0 26	SC, Dark gray, clayey sa	nd.		24.6	Sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.		
-29.5						LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SM 2 SM 3 ML		
-31.7	30.0	SW-SC, well graded sand with clay, little shell fragments.	д,		4	5 SP-SM Soils are Lab Classified in Accordance with ASTM-D2487		
	32.0	SW, well graded sand, fe shell fragments.	w		5	Terminated hole upon refusal depth of 35.3' below ocean bottom		
ING FC		IOUS EDITIONS ARE OBSOLETE	PRC	DJECT WILL				

Wilmington Harbor Improvements Project	40
Appendix C - Geotechnical Engineering	

PROJECT	VILMIN	GTON H	IARBOR INSTAL		MINGTON DISTRICT				
ELEVATION (MLLW)	DEPTH (feet)	Legend	CLASSIFICATION OF MATERIALS (Description)	%CORE RECOVERY	BOX OR SAMPLE	DISTRICT (Drilling time,	OF Z SHEET		
à	`b´		` d [']	e	f	weathering,	g g		
ſ		_0	BOTTOM OF HOLE AT 35.3'		35.3				
-35.3	36.0-								
			VISUALLY CLASSIFIED IN						
	-		ACCORDANCE WITH THE						
	-		CLASSIFICATION SYSTEM						
	38.0								
	=								
	-								
	40 0-								
	-0.0								
	-								
	=								
	42.0								
	=								
	-								
	-								
	=								
	46.0								
	=								
	-								
	-0.0								
	-								
	=								
	50.0								
	=								
	=								
	52.0								
	-								
	54.0								
	_								
	-								
	56.0								
	-								
	58.0								
ENG EC)RM 19			ROJECT			HOLE NO.		
MAR 71				WILI	MINGTO	N HARBOR	WH13-V-05		

ASTM D 422-63 (2007)

ClientUSClient ReferenceWProject No.20Lab ID20	SACE HIP)13-677-01)13-677-01	-10		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-5 22.1-24.6 2 GRAY			
Moisture Content of Passi	ng 3/4" Ma	aterial	Water Con	tent of Retained 3	/4" Material			
Tare No.		830	Tare No.			NA		
Ngt.Tare + Wet Specimen (gm) 737.49			Wgt.Tare	+ Wet Specimen	(gm)	NA		
Wgt.Tare + Dry Specimen (gm) 626.42			Wgt.Tare	Wgt.Tare + Dry Specimen (gm)				
Weight of Tare (gm) 258.32			Weight of	Tare (gm)		NA		
Weight of Water (gm)		111.07	Weight of	NA				
Weight of Dry Soil (gm)		368.10	Weight of	Weight of Dry Soil (gm)				
Moisture Content (%)		30.2	Moisture	Content (%)		NA		
Wet Weight -3/4" Sample	e (gm)	NA	Weight of	the Dry Specime	n (gm)	368.10		
Dry Weight - 3/4" Sample	e (gm)	301.8	Weight of	minus #200 mate	erial (gm)	66.28		
Wet Weight +3/4" Sample (gm) NA			Weight of plus #200 material (gm) 301					
Dry Weight + 3/4" Sample (gm) 0.00				4				
Total Dry Weight Sample (gm) NA								

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	. ,	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	0.00	0.0	0.0	100.0	100.0
#10	2.00	0.87	0.2	0.2	99.8	99.8
#20	0.850	2.21	0.6	0.8	99.2	99.2
#40	0.425	2.75	0.7	1.6	98.4	98.4
#60	0.250	53.77	14.6	16.2	83.8	83.8
#140	0.106	193.82	52.7	68.8	31.2	31.2
#200	0.075	48.40	13.1	82.0	18.0	18.0
Pan	-	66.28	18.0	100.0	-	-

	Tested By	AG	Date	6/17/	13	Checked By	Een	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DAT	E 6-25-98 REVI	SION: 2	Z:\20	13 PROJECTS\2013-677	USACE whip\[2013-	677-01-10 SIEVON R	EV 4 wHeader.xls]Shee	t1

dsiSheet1

SIEVE ANALYSIS ASTM D 422-63 (2007)

DCN: CT-S3C DATE 6-25-98 REVISION: 2 page 1 of 2 Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-10 SIEVON REV 4

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-07 2013-677-07	I I-09		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-5 17.9-22.1 1 GRAY				
Moisture Content of Pa	assing 3/4" M	aterial	Water Con	tent of Retained 3	8/4" Material				
Tare No.		832	Tare No.			NA			
Ngt.Tare + Wet Specimen (gm) 761.96			Wgt.Tare	+ Wet Specimen	(gm)	NA			
Wgt.Tare + Dry Speci	imen (gm)	578.39	Wgt.Tare	Wgt.Tare + Dry Specimen (gm)					
Weight of Tare (gm)		258.98	Weight of	Tare (gm)		NA			
Weight of Water (gm))	183.57	Weight of	Weight of Water (gm)					
Weight of Dry Soil (gr	n)	319.41	Weight of	Dry Soil (gm)		NA			
Moisture Content (%	6)	57.5	Moisture	Content (%)		NA			
Wet Weight -3/4" San	nple (gm)	NA	Weight of	the Dry Specime	n (gm)	319.41			
Dry Weight - 3/4" San	nple (gm)	265.4	Weight of	minus #200 mate	erial (gm)	53.98			
Wet Weight +3/4" Sample (gm) NA			Weight of plus #200 material (gm) 2						
Dry Weight + 3/4" Sample (gm) 0.00									
Total Dry Weight Sam	nple (gm)	NA							

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	2.29	0.7	0.7	99.3	99.3
#4	4.75	1.65	0.5	1.2	98.8	98.8
#10	2.00	9.12	2.9	4.1	95.9	95.9
#20	0.850	13.28	4.2	8.2	91.8	91.8
#40	0.425	30.64	9.6	17.8	82.2	82.2
#60	0.250	84.29	26.4	44.2	55.8	55.8
#140	0.106	115.33	36.1	80.3	19.7	19.7
#200	0.075	8.83	2.8	83.1	16.9	16.9
Pan	••••••••••••••••••••••••••••••••••••••	53.98	16.9	100.0	-	-

	Tested By	AG	Date	6/17/	13	Checked By	Gen	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVIS	ION: 2	Z:\20	13 PROJECTS\2013-677 US	ACE whip\[2013-677-0	1-09 SIEVON R	EV 4 wHeader.xls]Sheet	1

2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 - www.geotechnics.net

Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-09 SIEVON REV 4 wHeader.xls]Sheet1

DCN: CT-S3C DATE 6-25-98 REVISION: 2

page 1 of 2

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0' 2013-677-0'	1 1-13		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-5 31.2-35.3 5 LIGHT GRAY			
Moisture Content of Pa	assing 3/4" M	aterial	Water Con	tent of Retained 3	/4" Material			
Tare No.		839	Tare No.			NA		
Wgt.Tare + Wet Spec	cimen (gm)	749.55	Wgt.Tare	+ Wet Specimen	(gm)	NA		
Wgt.Tare + Dry Spec	imen (gm)	620.15	Wgt.Tare	+ Dry Specimen ((gm)	NA		
Weight of Tare (gm)	257.76	Weight of	Tare (gm)		NA			
Weight of Water (gm))	129.40	Weight of	Weight of Water (gm)				
Weight of Dry Soil (gr	n)	362.39	Weight of	Dry Soil (gm)		NA		
Moisture Content (%	6)	35.7	Moisture	Content (%)		NA		
Wet Weight -3/4" Sar	nple (gm)	NA	Weight of	the Dry Specime	n (gm)	362.39		
Dry Weight - 3/4" San	nple (gm)	337.0	Weight of	minus #200 mate	erial (gm)	25.37		
Wet Weight +3/4" Sa	mple (gm)	NA	Weight of	Weight of plus #200 material (gm) 33				
Dry Weight + 3/4" Sai	mple (gm)	0.00						
Total Dry Weight San	ıple (gm)	NA						

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	5.22	1.4	1.4	98.6	98.6
#10	2.00	20.44	5.6	7.1	92.9	92.9
#20	0.850	55.55	15.3	22.4	77.6	77.6
#40	0.425	80.98	22.3	44.8	55.2	55.2
#60	0.250	91.25	25.2	69.9	30.1	30.1
#140	0.106	77.61	21.4	91.4	8.6	8.6
#200	0.075	5.97	1.6	93.0	7.0	7.0
Pan	-	25.37	7.0	100.0		

	Tested By	AG	Date	6/17/13	3 Checked By	Gen	Date	6-18-13
page 2 of 2		DCN: CT-S3C DA	ATE 6-25-98 REVIS	ION: 2 Z	2013 PROJECTS\2013-677	USACE whip\[2013-677-0	01-13 SIEVON	REV 4 wHeader.xls]Sheet

SIEVE ANALYSIS ASTM D 422-63 (2007)

1	0/5//	F ANAL VOID	INDOOMETED
	2013-077-01-13		LIGHT GRAT
LahID	2013 677 01 13	Soil Color	LIGHT GRAY
Project No.	2013-677-01	Sample No.	5
Client Reference	WHIP	Depth (ft)	31.2-35.3
Client	USACE	Boring No.	WH-13-V-5

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-07 2013-677-07	1 1-12		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-5 29.5-31.2 4 GRAY	
Moisture Content of Pa	assing 3/4" M	aterial	Water C	ontent of Retained 3	/4" Material	
Tare No.		833	Tare No).		NA
Wgt.Tare + Wet Spee	cimen (gm)	796.71	Wgt.Ta	re + Wet Specimen	(gm)	NA
Wgt.Tare + Dry Spec	imen (gm)	606.76	Wgt.Ta	re + Dry Specimen ((gm)	NA
Weight of Tare (gm)		259.30	Weight	of Tare (gm)		NA
Weight of Water (gm)	189.95	Weight	of Water (gm)		NA
Weight of Dry Soil (gr	m)	347.46	Weight	of Dry Soil (gm)		NA
Moisture Content (%	6)	54.7	Moistu	re Content (%)	<u>,</u>	NA
Wet Weight -3/4" Sar	mple (gm)	NA	Weight	of the Dry Specime	n (gm)	347.46
Dry Weight - 3/4" Sar	nple (gm)	169.3	Weight	of minus #200 mate	erial (gm)	178.14
Wet Weight +3/4" Sa	mple (gm)	NA	Weight	of plus #200 materi	al (gm)	169.32
Dry Weight + 3/4" Sa	mple (gm)	0.00				
Total Dry Weight San	nple (gm)	NA				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	1.55	0.4	0.4	99.6	99.6
#10	2.00	16.22	4.7	5.1	94.9	94.9
#20	0.850	40.54	11.7	16.8	83.2	83.2
#40	0.425	41.48	11.9	28.7	71.3	71.3
#60	0.250	35.76	10.3	39.0	61.0	61.0
#140	0.106	28.15	8.1	47.1	52.9	52.9
#200	0.075	5.62	1.6	48.7	51.3	51.3
Pan	-	178.14	51.3	100.0	-	-

	Tested By	AG	Date	6/17/	13 Checked	By Geen	n Date	6-18-1	3
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVIS	SION: 2	Z:\2013 PROJECTS\20	13-677 USACE whip\[20	13-677-01-12 SIEVO	N REV 4 wHeader.xls]	Sheet1

Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-12 SIEVON REV 4 wHeader.xls]Sheet1

2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 - www.geotechnics.net

DCN: CT-S3C DATE 6-25-98 REVISION: 2

page 1 of 2

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-01 2013-677-01	1 1-11		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-5 24.6-29.5 3 GRAY	
Moisture Content of P	assing 3/4" M	aterial	Water Con	tent of Retained 3	/4" Material	
Tare No.		831	Tare No.	×		NA
Wgt.Tare + Wet Spe	cimen (gm)	703.32	Wgt.Tare	+ Wet Specimen	(gm)	NA
Wgt.Tare + Dry Spec	cimen (gm)	558.73	Wgt.Tare	+ Dry Specimen	(gm)	NA
Weight of Tare (gm)	• •	262.41	Weight of	Tare (gm)		NA
Weight of Water (gm	1)	144.59	Weight of	Water (gm)		NA
Weight of Dry Soil (g	m)	296.32	Weight of	Dry Soil (gm)		NA
Moisture Content (%	%)	48.8	Moisture	Content (%)		NA
Wet Weight -3/4" Sa	mple (gm)	NA	Weight of	the Dry Specime	n (gm)	296.32
Dry Weight - 3/4" Sa	mple (gm)	101.7	Weight of	minus #200 mate	erial (gm)	194.64
Wet Weight +3/4" Sa	ample (gm)	NA	Weight of	plus #200 materi	al (gm)	101.68
Dry Weight + 3/4" Sa	imple (gm)	0.00				
Total Dry Weight Sar	nple (gm)	NĂ				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0	100.0
#4	4.75	0.17	0.1	0.1	99.9	99.9
#10	2.00	5.60	1.9	1.9	98.1	98.1
#20	0.850	8.63	2.9	4.9	95.1	95.1
#40	0.425	7.37	2.5	7.3	92.7	92.7
#60	0.250	12.06	4.1	11.4	88.6	88.6
#140	0.106	42.82	14.5	25.9	74.1	74.1
#200	0.075	25.03	8.4	34.3	65.7	65.7
Pan	-	194.64	65.7	100.0	-	-

	Tested By	AG	Date	6/17/	13 Checked By	Gem	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVIS	SION: 2	Z:\2013 PROJECTS\2013-6	77 USACE whip\[2013-677-	-01-11 SIEVON I	REV 4 wHeader.xls]Sheet	1

													A	21	IVI	υ	4,	22.	-00) (2	.00	<i>(()</i>	,																		
Clie Clie Pro Lab	ent ent R ject ID	efe No	eren	ce		U W 20 20	SA /HI 01: 01:	\C IP 3-6 3-6	E 67 67	7-(7-()1)1-	11													E	Bor Dej Sar Soi	ring oth npl I C	(fi le olc	lo. t) No or).				VH 24. 5	- - 6- XA	13 29 Y	-V 9.5	-5			
us	cs							ara	- iv	el				SI	E١	/E	A	N/	٩L	YS	IS	sa	nc	4			,		<u>г</u>			l	HYI	DF	20	M	E7	<i>EF</i>	? cla	av	7
																													L												-
	100 -	n 111	TT	12' ≎_		6" ⊷	3	." 9-1	Ŷ	- ^ -	_3 _∽	¦/4" ≁		3/8 1∕1⊤	••	#4	4	#	10	#	20)	#4	0	T	#1	40	#2	00	1 1				T	TT	ТТ					1
																					╘		×																		
	90 -			-																					8																
	80 -																					-					Ź														
	70 -																											Ŋ						╫					-		
Weight	60												,																								-				
ner By	50		++-						<u>_</u>										-				_								-	_									
rcent Fi	40								-																																
Pel	-																																								
	30 -																																	T							
	20 -																														_							-			
	10 -								-						+								<u>.</u>								_			╢					+		
	0										minister																-10440														
	10	00				1	00						1	0			Pa	rtic	le	Dia	1 me	te	r (n	nm)		0	.1					C	.01	1					0.0	001
USC	cs s	yn	ibol	1		m	I, <i>I</i>	45	S	UN	/E	D																													
USC	cs c	las	ssifi	cat	ior	n S/	4N	D	Y	SI	LT																														
			Tes	ted	Ву	/	A	١G				Da	te			6	/1	7/1	3	(Ch	ec	ke	d	By			Ê	Ł	Ŷ	<u>۱</u>		<u> </u>)al	te		l	2 ~	18	17	3

page 1 of 2 DCN: CT-S3C DATE 6-25-98 REVISION: 2 Z:2013 PROJECTS:2013-677 USACE whip:[2013-677-01-11 SIEVON REV 4 wHeader.xis]Sheet1

/ibratory D	illing Log	SAD		WILMIN	IGTON	NDISTRICT OF 2 SHEET					
. PROJECT	ON HARBO	OR	10. SIZE								
		06 750 0			VATION L	MLLW					
DRILLING AGEN	$\nabla U = Z, Z$		12. MANU	FACTURE	RS DESIG	NATION OF DRILL bracore Snell					
		IDISTRICT	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED								
and file number)		WH13-V-06	U BURDEN SAMPLES TAKEN : 4 : 0 14. TOTAL NUMBER CORE BOXES ()								
. NAME OF DRILL	ER Lester C	Gavghf	15. ELEV	ATION GRC	UND WAT	^{TER} N/A					
DIRECTION OF H	IOLE	DEG EROM VERTICAL	16. DATE	HOLE	STAR	Z/18/13 COMPLETED 2/18/13					
		D 47.0	17. ELEV.	ATION TOP	OF HOLE	0.0					
. DEPTH DRILLED	INTO ROCK	0.0'	18. TOTA	L CORE RE	COVERY	FOR BORING N/A					
. TOTAL DEPTH C	FHOLE	34.9'	19. 31014/		NOPECIC						
ELEVATION DEPT (MLLW) (feet a b	H Legend c	CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY e	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) 9					
						Time begin vibracoring:					
10						0000 ma.					
16.						Soils Field Classified by					
			,			Engineer					
		0.0 TO 17.9 WATE	`			NOTE: Top of boring is					
-17.9 18		OCEAN BOTTOM @1	7.9'	-	—17.9—	defined as surface of water					
10.		poorly graded sand, with	,			and compensation is made for tide such that Top of					
	_	little shell fragments.				Hole is 0.0 EL MLLW.					
20.)				1						
-21.9 22.		Trace shell fragments.		-	21.9	-					
		indee anon naginerna.									
						VIBRACORE BORING					
	-					Ran' Rec: '					
24.	D				2						
						Top of vibracore soil sample is logged as					
						beginning at Ocean					
						Bottom. When Run is					
<u>-26.2</u> 26.)_ <mark>_****</mark> _			-	26.2	difference is depicted as					
		graded sand, with, few sl	nell			Assumed Not Recovered.					
	 	fragments.				LAB CLASSIFICATION					
						Jar					
28.						1 SP					
					3	2 SP					
						3 SP					
20											
30.	/ _ 00 00 00 00 00 00 00 00 00 00 00 00 0					Soils are Lab Classified in					
	_ <mark>0 </mark>					Accordance with ASTM-D2487					
-31.4	00000	SD Crow first and		-	31.4						
32)	graded sand.				Terminated hole upon					
						refusal depth of 34.9'					
					4	below ocean bottom					
					-						
34.											
		OUS EDITIONS ARE OBSOLETE	PR	OJECT		HOLE NO.					
MAR 71				WILI	MINGTO	ON HARBOR WH13-V-06					
Wilmington Harbor Improvements Project	52										
--	----										
Appendix C - Geotechnical Engineering											

ROJECT	VILMIN	GTON H		ALLATION			SHEET 2	
ELEVATION (MLLW) a	DEPTH (feet) b	Legend c	CLASSIFICATION OF MATERIALS (Description) d	%CORE RECOVERY	BOX OR SAMPLE NO.	REI (Drilling time, v weathering, d	<u>UF ∠ SHI</u> MARKS waterloss, depth of etc., if significant)	<u>==1</u> 3
2	-		SP, Gray, fine, poorly		34.9		9	
			graded sand. (continued from previous page)					
	36.0		providuo pugoj					
	-	• • • •						
-37.9	38.0		BOTTOM OF HOLE AT 34.9'					
	-		SOILS ARE FIELD					
	-		VISUALLY CLASSIFIED IN ACCORDANCE WITH THE					
	40.0							
	-		CEASSI ICATION STOTEM					
	42.0							
	-							
	-							
	44.0_							
	-							
	-							
	46.0							
	-							
	48.0							
	-							
	50.0							
	0.0							
	52.0							
	-							
	-							
	54.0							
	-							
	-							
	56.0							
	 קפ							
	50.0							
ENG FC	0RM 18	336 PREV	IOUS EDITIONS ARE OBSOLETE	PROJECT			HOLE NO.	~

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-07 2013-677-07	1 1-14		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-6 17.9-21.9 1 DARK TAN	
Moisture Content of Pa	assing 3/4" M	aterial	Water Con	tent of Retained 3	3/4" Material	
Tare No.		837	Tare No.			NA
Wgt.Tare + Wet Spee	cimen (gm)	728.45	Wgt.Tare	+ Wet Specimen	ı (gm)	NA
Wgt.Tare + Dry Spec	imen (gm)	661.37	Wgt.Tare	+ Dry Specimen	(gm)	NA
Weight of Tare (gm)		261.02	Weight of	Tare (gm)		NA
Weight of Water (gm)	67.08	Weight of	Water (gm)		NA
Weight of Dry Soil (gr	m)	400.35	Weight of	Dry Soil (gm)		NA
Moisture Content (%	6)	16.8	Moisture	Content (%)	-	NA
Wet Weight -3/4" Sar	nple (gm)	NA	Weight of	the Dry Specime	en (gm)	400.35
Dry Weight - 3/4" Sar	nple (gm)	396.5	Weight of	minus #200 mate	erial (gm)	3.90
Wet Weight +3/4" Sa	mple (gm)	NA	Weight of	plus #200 materi	ial (gm)	396.45
Dry Weight + 3/4" Sa	mple (gm)	0.00				
Total Dry Weight San	nple (gm)	NA				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	. ,	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	1.07	0.3	0.3	99.7	99.7
3/8"	9.50	6.65	1.7	1.9	98.1	98.1
#4	4.75	11.02	2.8	4.7	95.3	95.3
#10	2.00	13.39	3.3	8.0	92.0	92.0
#20	0.850	28.19	7.0	15.1	84.9	84.9
#40	0.425	155.25	38.8	53.8	46.2	46.2
#60	0.250	80.12	20.0	73.9	26.1	26.1
#140	0.106	98.25	24.5	98.4	1.6	1.6
#200	0.075	2.51	0.6	99.0	1.0	1.0
Pan	-	3.90	1.0	100.0	-	-

	Tested By	AG	Date	6/17/1	3	Checked By	Gen	Date	6-18-19	
page 2 of 2		DCN: CT-S3C DATE	E 6-25-98 REVISI	ION: 2	Z:\2013	PROJECTS\2013-677	USACE whip\[2013-677-0	1-14 SIEVON RE	EV 4 wHeader.xls]Sh	eet1

Clie Clie Pro Lat	ent ent R oject o ID	tef Nc	ere).	nc	e		US WI 20 20	5A) HII 13	CE -6 -6	- 77 77	-0 ⁻	1 1-1	4													Bo Do Sa So	orii epi am oil	ng plo Cc	N (ft e I olo	o.) No r	•				vi 1 1 D	7.9 Al	1-1 9-2 RH	3- 21	.ү. .9 ГА	-6 .N				
			T.												S/I	ΞV	Æ	A	NA	LY	'SI	s												H	YD	R	0	ML	ĒT	ΈI	R			I
US	cs							g	ra	ve	I						Ι					S	ar	nd													S	ilt	a	nd	l c	lay	/	
	100	I TT	, , ,	1	2"	_6" ◆	, 	3''		~	`	3/	4"	3	/8'	•	#4		#1	0	#2	20	#	#40)	#	14	0 1	#2(00	, , ,			1		1111						101100		
	90																\$	-																								,		
	80 -																					Ĩ																						
	70 -										-																																	
eight	60 -			_															-																									
ner By We	50 -																		,																									
Percent Fi	40 -																							Î				_																
-	30 -						_																					_																
	20 -					-																				Ì		_									_							
	10 -						·																				/														-			
	0 10	Ш 00					10	 0						10							 1							<u>\</u> 0.	1						0.	01						(0.0	01
110	~~ ~	• • • •	a h			-			<u> </u>	e1		E 2					ł	Par	tic	le D	lan	net	er	(mr	n)	D /	20	_			^	=			~	<u> </u>		-			^			
US	cs c	yn Xa:	ssi	ת fic	atio	s on F	sp, P0	0	RL	.γ	Gi	RA	D	ΞD	s	A	NL	2								D	30	=			0.: 0.:	3			C	U		2		3	.0 8.8			
	010	f 2	Te	ste	ed E	By		A	G				Dat	e			6/	17	7/1	3	C	he	ck	ed	B	D1 by	10	=			0.* A	1 2)	<u>n</u>	01.1	D	at	e	pr	6	-1	8		<u>q</u>	head

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-0 2013-677-0	1 1-16		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-6 26.2-31.4 3 GRAY	
Moisture Content of Pa	assing 3/4" M	aterial	Water Co	ntent of Retained 3/	/4" Material	
Tare No.		838	Tare No.			NA
Wgt.Tare + Wet Spec	cimen (gm)	776.15	Wgt.Tare	+ Wet Specimen	(gm)	NA
Wgt.Tare + Dry Spec	imen (gm)	709.95	Wgt.Tare	+ Dry Specimen ((gm)	NA
Weight of Tare (gm)		261.76	Weight o	f Tare (gm)		NA
Weight of Water (gm))	66.20	Weight o	f Water (gm)		NA
Weight of Dry Soil (gr	n)	448.19	Weight o	f Dry Soil (gm)		NA
Moisture Content (%	6)	14.8	Moisture	Content (%)		NA
Wet Weight -3/4" Sar	nple (gm)	NA	Weight o	f the Dry Specimer	n (gm)	448.19
Dry Weight - 3/4" Sar	nple (gm)	446.8	Weight o	f minus #200 mate	rial (gm)	1.35
Wet Weight +3/4" Sa	mple (gm)	NA	Weight o	f plus #200 materia	al (gm)	446.84
Dry Weight + 3/4" Sai	mple (gm)	0.00				
Total Dry Weight San	nple (gm)	NA				-

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	4.70	1.0	1.0	99.0	99.0
3/8"	9.50	6.86	1.5	2.6	97.4	97.4
#4	4.75	28.95	6.5	9.0	91.0	91.0
#10	2.00	33.29	7.4	16.5	83.5	83.5
#20	0.850	36.60	8.2	24.6	75.4	75.4
#40	0.425	198.00	44.2	68.8	31.2	31.2
#60	0.250	105.35	23.5	92.3	7.7	7.7
#140	0.106	31.46	7.0	99.3	0.7	0.7
#200	0.075	1.63	0.4	99.7	0.3	0.3
Pan	-	1.35	0.3	100.0	-	-

	Tested By	AG	Date	6/17/	13 Chec	ked By	GAN	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVI	SION: 2	Ż:\2013 PROJE	CTS\2013-677 USAC	E whip\[2013-677-0	1-16 SIEVON F	REV 4 wHeader	.xls]Sheet1

ASTM D 422-63 (2007)

Client Client Reference Project No. Lab ID	USACE WHIP 2013-677-07 2013-677-07	1 1-17		Boring No. Depth (ft) Sample No. Soil Color	WH-13-V-6 31.4-34.9 4 GRAY	
Moisture Content of Pa	assing 3/4" M	aterial	Water Co	ntent of Retained 3	/4" Material	
Tare No.		208	Tare No.			NA
Wgt.Tare + Wet Spec	cimen (gm)	704.80	Wgt.Tare	e + Wet Specimen	(gm)	NA
Wgt Tare + Dry Spec	imen (gm)	630.40	Wgt.Tare	e + Dry Specimen ((gm)	NA
Weight of Tare (gm)	· · · ·	169.54	Weight o	f Tare (gm)		NA
Weight of Water (gm)	74.40	Weight o	f Water (gm)		NA
Weight of Dry Soil (gr	m)	460.86	Weight o	f Dry Soil (gm)		NA
Moisture Content (%	6)	16.1	Moisture	e Content (%)	******	NA
Wet Weight -3/4" Sar	nple (gm)	NA	Weight o	f the Dry Specime	n (gm)	460.86
Dry Weight - 3/4" Sar	nple (gm)	451.2	Weight o	f minus #200 mate	erial (gm)	9.63
Wet Weight +3/4" Sa	mple (gm)	NA	Weight o	f plus #200 materia	al (gm)	451.23
Dry Weight + 3/4" Sa	mple (gm)	0.00				
Total Dry Weight San	nple (gm)	NA				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
		(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	0.60	0.1	0.1	99.9	99.9
#4	4.75	0.99	0.2	0.3	. 99.7	99.7
#10	2.00	8.28	1.8	2.1	97.9	97.9
#20	0.850	42.60	9.2	11.4	88.6	88.6
#40	0.425	166.59	36.1	47.5	52.5	52.5
#60	0.250	188.64	40.9	88.5	11.5	11.5
#140	0.106	42.07	9.1	97.6	2.4	2.4
#200	0.075	1.46	0.3	97.9	2.1	2.1
Pan		9.63	2.1	100.0		

	Tested By	AG	Date	6/17/13	Checked By	CEM	Date 6-18-13	
page 2 of 2		DCN: CT-S3C DAT	E 6-25-98 REVIS	SION: 2 Z:\20	13 PROJECTS\2013-67	7 USACE whip\[2013-677	7-01-17 SIEVON REV 4 wHeader.xls]She	et1

2200 Westinghouse Blvd. - Suite 103 - Raleigh, NC 27604 - Phone (919) 876-0405 - Fax (919) 876-0460 - www.geotechnics.net

Z:\2013 PROJECTS\2013-677 USACE whip\[2013-677-01-17 SIEVON REV 4 wHeader.xls]Sheet1

DCN: CT-S3C DATE 6-25-98 REVISION: 2

page 1 of 2

ASTM D 422-63 (2007)

Client	USACE		Boring No.	WH-13-V-6	
Client Reference	WHIP		Depth (ft)	21.9-26.2	
Project No.	2013-677-01	1	Sample No.	2	
Lab ID	2013-677-01	1-15	Soil Color	DARK TAN	
Moisture Content of F	Passing 3/4" Ma	aterial	Water Content of Retained 3/	4" Material	
Tare No.		834	Tare No.		NA
Wgt.Tare + Wet Spe	ecimen (gm)	772.15	Wgt.Tare + Wet Specimen	(gm)	NA
Wgt.Tare + Dry Spe	cimen (gm)	686.59	Wgt.Tare + Dry Specimen (NA	
Weight of Tare (gm)	1	259.30	Weight of Tare (gm)		NA
Weight of Water (gn	n)	85.56	Weight of Water (gm)		NA
Weight of Dry Soil (g	gm)	427.29	Weight of Dry Soil (gm)		NA
Moisture Content (%)	20.0	Moisture Content (%)		NA
Wet Weight -3/4" Sa	mole (am)	NΔ	Weight of the Dry Specimer		427 29
Dry Weight - 3/4" Sa	mple (gm)	418.8	Weight of minus #200 mate	rial (om)	8.53
Wet Weight +3/4" S	ample (gm)	NA	Weight of plus #200 materia	al (am)	418.76
Drv Weight + 3/4" S	ample (gm)	0.00			
Total Drv Weight Sa	mple (am)	NA			
,	(0)				

Sieve	Sieve	Wgt.of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
	(mm)			Retained		Finer
	· · ·	(gm)	(%)	(%)	(%)	(%)
12"	300	0.00	0.0	0.0	100.0	100.0
6"	150	0.00	0.0	0.0	100.0	100.0
3"	75	0.00	0.0	0.0	100.0	100.0
2"	50	0.00	0.0	0.0	100.0	100.0
1 1/2"	37.5	0.00	0.0	0.0	100.0	100.0
1"	25.0	0.00	0.0	0.0	100.0	100.0
3/4"	19.0	0.00	0.0	0.0	100.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0	100.0
3/8"	9.50	1.62	0.4	0.4	99.6	99.6
#4	4.75	2.40	0.6	0.9	99.1	99.1
#10	2.00	3.68	0.9	1.8	98.2	98.2
#20	0.850	7.70	1.8	3.6	96.4	96.4
#40	0.425	57.46	13.4	17.1	82.9	82.9
#60	0.250	133.33	31.2	48.3	51.7	51.7
#140	0.106	210.92	49.4	97.6	2.4	2.4
#200	0.075	1.65	0.4	98.0	2.0	2.0
Pan	-	8.53	2.0	100.0	-	*

	Tested By	AG	Date	6/17/13	Checked By	4An	Date	6-18-13	
page 2 of 2		DCN: CT-S3C DA	TE 6-25-98 REVI	SION: 2 Z:\2	013 PROJECTS\2013-677 L	/SACE whip\[2013-677-0	1-15 SIEVON F	EV 4 wHeader.xls]S	Sheet1

Client Client Reference	USACE WHIP	Boring No. Depth (ft)	WH-13-V-6 21 9-26 2
Project No.	2013-677-01 2013-677-01-15	Sample No. Soil Color	2 DARK TAN

Attachment D: Boring Logs for Entrance Channel near Bald Head Island

(ibuataw Duillin - I		INSTALLA	TION	Ho	NO.: WH12-V-1		
/Ibratory Drilling Log	SAD	WILMINGTON DISTRICT OF 2 SHEETS					
WILMINGTON HARE	BOR	10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE					
N 43.958 0 F 2	298.254.0						
HOLE NO. (As shown on drawing title		-13. TOTAI BURD	_ NO. OF O EN SAMPL	VER- ES TAKEN	DISTURBED UNDISTURBED		
and file number) NAME OF DRILLER	VVH12-V-1	14. TOTAI	NUMBER	CORE BC	xes 0		
	Smith	15. ELEV#	ATION GRO		TER N/A		
	DEG. FROM VERTICAL	ITO. DATE			//12/12 ²⁰¹¹ 7/12/12		
THICKNESS OF WATER COLU	MN 39.7'	17. ELEV/	CORE RE				
DEPTH DRILLED INTO ROCK	0.0'	19. SIGNA	TURE OF I	NSPECTO	DR		
	CLASSIFICATION OF MATERIAL	s,	%CORE	BOX OR	REMARKS		
(MLLW) (feet) C a b C	(Description) d	0	RECOVERY	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) q		
					Time begin vibracoring:		
					0000 hrs.		
38.0					Soils Field Classified by		
		_			Engineer		
	0.0' TO 39.7' WATE	र					
-39.7	OCEAN BOTTOM @39	9.7'	-	—39.7—	defined as surface of water		
40.0	SC, Dark gray, clayey sa	nd.		1	and compensation is made		
_40.9					Hole is 0.0 EL MLLW.		
	CL , Dark gray lean clay,			10.0			
	organics.						
42.0							
44.0							
					From 0.0' to 19.30'		
					Ran 20' Rec: 20'		
46.0					Top of vibracore soil		
					sample is logged as		
					Bottom When Run is		
					greater than Recovery, the		
48.0					difference is depicted as		
				2			
					Jar		
					Number Classification		
					1 SC 2 Cl		
					3 SP-SM		
					Soils are Lab Classified in		
52.0					Accordance with		
					ASTM-D2487		
					COMPLETION NOTE:		
54.0					or predetermined depth at		
					19.3' below ocean bottom		
56.0							
NG FORM 1836 PRE	VIOUS EDITIONS ARE OBSOLETE	PR	DJECT		HOLE NO.		
				MILOT /			

-				WILMI	NGTON E		2 SHEETS
ELEVATION (MLLW) a	DEPTH (feet) b	Legend c	CLASSIFICATION OF MATERIALS (Description) d	%CORE RECOVERY 8	, SAMPLE NO.	REMARKS (Drilling time, water loss, weathering, etc., if sign	. depth of ificant)
	_				2	ÿ	
-57.5 /	-		SP. Tap to gravish brown		57.5		
	58.0		poorly graded sand.		3		
-59.0					-59		
			BOTTOM OF HOLE AT 59'				
	60.0		SOILS ARE FIELD				
	-		ACCORDANCE WITH THE				
	-		CLASSIFICATION SYSTEM				
	62.0						
	-						
	64.0						
	_						
	-						
	66.0						
	_						
	68.0						
	-						
	70 0						
	-						
	/2.0_						
	_						
	74.0						
	_						
	-						
	76.0						
	-						
	78.0						

(1) (D.111)	DIVISION	INSTALLA		Ho	ele No.: WH12-V-2	
/ibratory Drilling Log	SAD		WILMIN	IGTON	NDISTRICT OF 2 SHEET	
PROJECT WILMINGTON HARB(LOCATION	OR	10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE 11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL MM L L MA				
N 44,248.0 E 2,2	298,525.0	12. MANU	FACTUREF	RS DESIG		
	N DISTRICT					
HOLE NO.(As shown on drawing title . and file number)	WH12-V-2	BURD	EN SAMPLI	ES TAKEN		
NAME OF DRILLER	Smith	15. ELEV/	TION GRC	UND WAT	iaes U Γεκ Ν/Δ	
DIRECTION OF HOLE		16. DATE	HOLE	STAR		
	DEG. FROM VERTICAL	17. ELEV/		OF HOLE	0.0	
THICKNESS OF WATER COLUM	<u>N 39.5'</u> 0.0'	18. TOTAI	CORE RE	COVERY	FOR BORING N/A	
TOTAL DEPTH OF HOLE	59.1	19. SIGNA	TURE OF I	NSPECIC	R	
LEVATION DEPTH (MLLW) (feet) c a b c	CLASSIFICATION OF MATERIALS (Description) d	3	%CORE RECOVERY ®	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) a	
38.0					Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer	
	0.0 TO 59.5 WATER				NOTE: Top of boring is	
-39.5	OCEAN BOTTOM @39	1.5'		39.5	defined as surface of water	
40.0 4 0.0	with, trace shell fragment	s.		1	for tide such that Top of Hole is 0.0 EL MLLW.	
42.0	CL , Dark gray lean clay, with, trace wood.		-	<u> 41.4 </u>		
44.0						
					VIBRACORE BORING From 0.0' to 25.50' Ran 17.2' Rec: 19.6'	
46.0					Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.	
				2	LAB CLASSIFICATION Jar Number Classification	
50.0					1 SC 2 CL 3 SP	
52.0					Soils are Lab Classified in Accordance with ASTM-D2487	
54.0					COMPLETION NOTE: Terminated hole at refusal	
34.0					19.6' below ocean bottom	
56.0						

RUJEUT		GTON H	IAKBOR		INGTON	DISTRICT	OF 2 SHEETS
ELEVATION (MLLW) a	DEPTH (feet) b	Legend c	CLASSIFICATION OF MATERIALS (Description) d	%CORI RECOVE e	E BOX OR SAMPLE NO. f	REF (Drilling time, w weathering, e	NARKS vaterloss, depth of stc., if significant)
	_				2		<u> </u>
-57.3			SP, Tan to light gray, poo	rly			
	58.0		graded sand.		3		
-59.1					59.1		
			BOITOM OF HOLE AT	59.1'			
	60.0 _ 		VISUALLY CLASSIFIED				
			UNIFIED SOIL	FM			
	62 0						
	-						
	64.0						
	-						
	-						
	66.0						
	-						
	=						
	68.0						
	70.0						
	/2.0						
	74 0						
	-						
	76.0						
	78.0						
	80.0						
	=	200				·····	

/ibrator	v Drilling Log	DIVISION	INSTALLA		0.0.0		
. PROJECT	, Dinnig Lug	SAD	10. SIZE A		IGTON DEBIT	N DISTRICT OF 2 SHEET 4" DIA VIBRACORF	
WILMIN	GTON HARB	OR	11. DATUM	I FOR ELE	VATION D	ATUM SHOWN BM or MSL	
N 45	,329.0 E 2,	299,451.0	12. MANUFACTURERS DESIGNATION OF DRILL				
. DRILLING A	WILMINGTO	N DISTRICT					
ANDLE NO.(#	As shown on drawing title er)	WH12-V-3	BURDI	EN SAMPLI			
NAME OF D	Talon	Smith	15. ELEVA	TION GRC	UND WAT	rer N/A	
			16. DATE	HOLE	STAR	TED COMPLETED 7/11/12	
		ED 49.9'	17. ELEVA	TION TOP	OF HOLE	0.0	
. DEPTH DRI	LLED INTO ROCK	0.0'	18. TOTAL	CORE RE		FOR BORING N/A	
. TOTAL DEF	TH OF HOLE	13. 010101		POYOP	DEMADIZO		
ELEVATION (MLLW) a	(feet) Legend b c	CLASSIFICATION OF MATERIALS (Description) d	\$	%CORE RECOVERY ®	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) 9	
-48.8		0.0' TO 48.8' WATEF OCEAN BOTTOM @48 SC, Dark gray to gray, clayey sand.	8 8.8'			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of wate and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.	
-54.8	52.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 55.0	0 Deduced by des			1 	VIBRACORE BORING From 0.0' to 19.80' Ran 20' Rec: 20'	
-56.8	56.0	SW, Grayish tan, well graded sand.			2 —56.8—	Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, th difference is depicted as Assumed Not Recovered.	
	58.0 60.0 62.0				3	LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SC 2 CL 3 SW Soils are Lab Classified in Accordance with ASTM-D2487 COMPLETION NOTE: Terminated hole at refusa or predetermined depth at	
	64.0 64.0 800 800 800 800 800 800 800 8	/IOUS EDITIONS ARE OBSOLETE	PRO	DJECT		18' below ocean bottom	

JECT V	VILMIN	GTON H		HOLE NO.: WH12-V-3				
VATION	DEPTH	Lange	CLASSIFICATION OF MATERIALS	WILIVIIN %CORE		DIDINICI OF Z SHE REMARKS (Drilling time, water loss, depth of		
MLLW) a	(feet) b	c c	(Description) d	RECOVERY e	NO.	(Drilling time, water loss, depth of weathering, etc., if significant) 9		
	66.0	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○<	SW, Grayish tan, well		3			
66.8	_	00000	previous page)					
			BOTTOM OF HOLE AT 66.8'					
			SOILS ARE FIELD					
	00.0		VISUALLY CLASSIFIED IN ACCORDANCE WITH THE					
	_		UNIFIED SOIL					
	-		CLASSIFICATION STSTEM					
	70.0							
	-							
	/2.0							
	-							
	74.0							
	-							
	-							
	76.0							
	-							
	78.0							
	-							
	_							
	-							
	80.0							
	-							
	82.0							
	84.0							
	86.0							
	88.0							
	90.0							
IG FC	DRM 18	336 PREV	IOUS EDITIONS ARE OBSOLETE	ROJECT	I	HOLE NO.		

/ibraton/ Drilling Log		INSTALLA	TION		
PROJECT	SAD				
WILMINGTON HARE	OR	11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL MI I W			
N 45,662.0 E 2,	299,564.0	12. MANU	FACTURE	RS DESIG	NATION OF DRILL
	N DISTRICT	13 TOTAL			
. HOLE NO.(As shown on drawing title and file number)	WH12-V-4	BURD	EN SAMPL	ES TAKEN	
NAME OF DRILLER	14. TOTAL	TION GRC	UND WAT	TER NI/A	
DIRECTION OF HOLE	16. DATE	HOLE	STAR		
	ED DEG. FROM VERTICAL	17. ELEVA		OF HOLE	0.0
THICKNESS OF WATER COLU	MN 35.6'	18. TOTAL	CORE RE	COVERY	FOR BORING N/A
. TOTAL DEPTH OF HOLE	<u> </u>	19. SIGNA	TURE OF I	NSPECTO	R
ELEVATION DEPTH (MLLW) (feet) c	CLASSIFICATION OF MATERIAL (Description) d	3	%CORE RECOVERY 8	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)
	-		-	f	⁹ Time begin vibracoring:
					0000 nrs.
34.0					Soils Field Classified by
					Engineer
	0.0' TO 35.6' WATEF	۲			
-35.6	OCEAN BOTTOM @3	5.6'		35.6	defined as surface of water
36.0	SW, Light gray, well grad	ed			and compensation is made
	fragments.			1	Hole is 0.0 EL MLLW.
37.1			-	37.1	-
	CL, Dark gray sandy lear clay.	ו			
38.0					
				2	
_40.140.0	SC Dark gray clavey sa	nd	-	40.1	
	oo, bark gray, dayby da	na.			
					Ran 20' Rec: 20'
42.0				3	Top of vibracore soil
					beginning at Ocean
					Bottom. When Run is
					difference is depicted as
_44.5			-	44.5	Assumed Not Recovered.
	CL, Dark gray lean clay.			4	LAB CLASSIFICATION
45.3/	SP, Tan to dark brown,			+0.3	Jar Number Classification
46.0	poony graded sand.				1 SW
					2 SC 3 SC
					4 CL
					5 SP
48.0				5	7 SP-SM
					Solls are Lab Classified in Accordance with
50 0					ASTM-D2487
50.0					
					COMPLETION NOTE:
-51.4	Cl. Davis arrests are sto				Terminated hole at refusal
52 0	uL, Dark gray lean clay.			6	or predetermined depth at 19.3' below ocean bottom
ENG FORM 1836 PREV	IOUS EDITIONS ARE OBSOLETE	PRO			
NUMES ()			¥¥I∟I		0111/1/2-V-4

OJECT V		GTON H							
EVATION	DEPTH		CLASSIFICATION OF MATERIALS	WILMIN %CORE	BOX OR		OF 2 SHEETS		
(MLLW) a	(feet) b	c	(Description) d	RECOVERY e	NO. f	weathering, etc	ai ross, depuror 2., if significant) 1		
			CL, Dark gray lean clay.						
	-		page)		6				
-54.1	54.0		SP Light gray, poorly	_	—54 .1 —				
	_		graded sand.		7 —54.9—				
-54.9 /			BOTTOM OF HOLE AT 54.9'						
	56.0		SOILS ARE FIELD						
	-		ACCORDANCE WITH THE						
			CLASSIFICATION SYSTEM						
	58.0								
	60.0								
	-								
	-								
	62.0								
	64.0								
	-								
	66.0								
	-								
	-								
	68.0								
	-								
	70.0								
	70.0								
	-								
	72.0								
	74.0								
	/6.0								

/ibrator	v Drilling	loa								
PROJECT SAD					WILMINGTON DISTRICT OF 2 SHEETS					
					11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL					
N 45,647.0 E 2,299,799.0										
					Vibracore Snell					
					13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 3 0					
and file number) WH12-V-5					14. TOTAL NUMBER CORE BOXES 0					
Talon Smith					15. ELEVATION GROUND WATER N/A					
			DEG. FROM VERTICAL	16. DATE HOLE STARLED 7/11/12 COMPLETED 7/11/12						
			u 415'	17. ELEVATION TOP OF HOLE 0.0						
DEPTH DF	RILLED INTO R	OCK	0.0'	18. TOTAL CORE RECOVERY FOR BORING N/A						
TOTAL DE	PTH OF HOLE		58.6'	,		nor core				
ELEVATION (MLLW) a	DEPTH (feet) Lei b	gend c	CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY 8	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) 9			
		\leq					Time begin vibracoring:			
		\leq					0000 hrs.			
		\sim					Soils Field Classified by			
	40.0	\leq					Zachry Nichols, Civil			
	\rightarrow	\simeq	0.0' TO 41.5' WATER	ર						
-41.5		\lesssim	OCEAN BOTTOM @4	1.5'			NOTE: Top of boring is			
			CL, Dark gray sandy lear	1]		and compensation is made			
	42.0		clay.				for tide such that Top of			
	=						HOIE IS U.U EL IVILLVV.			
	44.0									
	46.0									
	= /						From 0.0' to 24.60'			
						1	Ran 20' Rec: 20'			
	48.0						sample is logged as			
							beginning at Ocean			
							Bottom. When Run is			
							greater than Recovery, the			
	50.0						Assumed Not Recovered.			
							LAB CLASSIFICATION			
	_/						Jar			
							Number Classification			
-52.5	52.0					50.5	1 GL 2 SM			
V 6. V	-	ø	SP-SM, Gray poorly grad	ed	1	—-∋∠.5—	3 SP			
		a 0	sand, with some silt.				Paile are Lab Olassifia Li			
		•				2	Solis are Lab Classified in Accordance with			
	54.0	a Î					ASTM-D2487			
-54.9		•				54 9				
	_		SP, Gray poorly graded			54.5-	COMPLETION NOTE:			
			sand.				Terminated hole at refusa			
	56.0						or predetermined depth at			
						3	17.1 below ocean bottom			
	58.0									
NG FC	RM 1836) PREVI	OUS EDITIONS ARE OBSOLETE	PR	DJECT		HOLE NO.			

ROJECT				Hole No.: WH12-V-5 NSTALLATION SHEET 2						
				WIL		GTON	DISTRICT	OF 2 SHEETS		
(MLLW) a	(feet) b	Legend c	CLASSIFICATION OF MATERIALS (Description) d	RECOV	VERY	SAMPLE NO. f	(Drilling time, weathering,	water loss, depth of etc., if significant) q		
	-		BOTTOM OF HOLE AT 5	8.6'		-58.6		9		
-58.6	-		SOILS ARE FIELD							
	60.0-		VISUALLY CLASSIFIED I	N						
	-		UNIFIED SOIL							
			CLASSIFICATION SYSTE	EM						
	-									
	62.0									
	=									
	-									
	64.0									
	-									
	-									
	66.0									
	-									
	-									
	-									
	00.0									
	-									
	-									
	70.0									
	-									
	70.0									
	12.0									
	_									
	-									
	74.0									
	-									
	/b.U_ -									
	_									
	78.0									
	-									
	80.0									
	_									
	82.0									
		236 DDEV		PROJECT				HOLE NO.		

lihrator		na Loa		INSTALL			NE NO.: WH12-V-6	
. PROJECT	y Driili	пу сод	SAD					
	IGTON	HARB	OR	11. DATU	MFORELE	VATION E	ATUM SHOWN BM or MSL	
N 46	5,042.0	0 E 2,2	299,848.0	12. Manu	IFACTURE	₹S DESIG	NATION OF DRILL	
3. DRILLING /	agency WILM	INGTO	N DISTRICT	Vibracore Snell				
HOLE NO.(and file numb	As shown or ser)	n drawing title	WH12-V-6	BURD	EN SAMPL	ES TAKEN		
5. NAME OF I	DRILLER	Talon	Smith	15. ELEV/	ATION GRO	UND WAT	TER Ν/Δ	
DIRECTION	N OF HOL	E		16. DATE	HOLE	STAR		
VERT	ICAL	INCLINE	ED DEG. FROM VERTICAL	17. ELEV/	ATION TOP	OF HOLE	0.0	
7. THICKNES	S OF WA	TER COLUN	1N <u>38.6'</u> 0.0'	- 18. TOTA	L CORE RE	COVERY	FOR BORING N/A	
. TOTAL DE	PTH OF H	OLE	58.6	-19. SIGN/	ATURE OF I	NSPECTO	R	
ELEVATION (MLLW) a	DEPTH (feet) b	Legend c	CLASSIFICATION OF MATERIAL (Description) d	5	%CORE RECOVERY 8	BOX OR SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) g	
	26.0-						Time begin vibracoring:	
	50.0						0000 nrs.	
	-						Soils Field Classified by	
	-	\approx		,			Engineer	
	38.0		0.0 10 30.0 WATER	, ,			NOTE: Top of borina is	
-38.6			OCEAN BOTTOM @38	3.6'		—38.6—	defined as surface of water	
			poorly graded sand.			1	for tide such that Top of	
-39.8		<u>/0</u>					Hole is 0.0 EL MLLŴ.	
	40.0	0/0	graded sand, with some	clay,				
		• •	trace shell fragments.					
		•						
	42.0							
	-	0 0						
	_	0				2		
	-						VIBRACORE BORING	
	44.0						Ran 20' Rec: 20'	
	11						Ton of the second sold	
							sample is logged as	
-46.2	46.0	e e				46.2	beginning at Ocean	
	-	9 /2 / 2	SC, Gray to dark gray,			40.2	greater than Recovery, the	
		8 <mark>8</mark> 8	clayey sand.				difference is depicted as	
		9/0/0/0/					Assumed Not Recovered.	
	48.0	a a					LAB CLASSIFICATION	
	-	0 0 8				3	Number Classification	
	-						1 SM 2 MH	
	50.0-	¢/2/2/					3 SC	
							4 CL 5 SP	
-50.9	-	/2//8/	CL. Dark grav lean clay			50.9		
	-		with, little wood.				Soils are Lab Classified in Accordance with	
	52.0						ASTM-D2487	
	-							
						4	COMPLETION NOTE:	
	54 0-						or predetermined depth at	
	J 4 .U						20' below ocean bottom	
		226		DP				
LING FO MAR 71	NN 18	აკი brev	YOUS EDITIONS ARE OBSOLETE	PR	WILI	MINGTO		

PROJECT V	VILMIN	GTON H	ARBOR		IGTON			2
ELEVATION	DEPTH	Legend	CLASSIFICATION OF MATERIALS	%CORE	BOX OR SAMPLE	(Drilling time, w	IOF Z MARKS aterioss, dept	SHEET
B	b	C	d d	e	NO. f	weathering, e	tc., if significar g	t)
	56.0		CL, Dark gray lean clay, with, little wood, <i>(continued</i>		4			
56.6	-	.	from previous page)					
	-		SP, Light gray, poorly graded sand					
			gradod barrar		5			
58.6	58.0							
-00.0	_		BOTTOM OF HOLE AT 58.6	1				
	-		SOILS ARE FIELD					
	60.0		VISUALLY CLASSIFIED IN					
	_		UNIFIED SOIL					
	-		CLASSIFICATION SYSTEM					
	-							
	62.0							
	-							
	-							
	64.0							
	-							
	66.0							
	_							
	_							
	68 0							
	-							
	-							
	70.0							
	-							
	-							
	72 0							
	, 2.0							
	-							
	-							
	74.0							
	-							
	76 0							
	, 0.0							
	-							
	-							
	78.0							
	80.0-							
ENG FC	RM 18	36 PREV	IOUS EDITIONS ARE OBSOLETE	PROJECT		+	IOLE NO.	

y Drilling Log		INSTALLA	ATION WILMIN			
		10. SIZE /	AND TYPE (OF BIT	4" DIA VIBRACORE	
		11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL MLLW				
(,U79.0 E 2, AGENCY	300,574.0	12. MANUFACTURERS DESIGNATION OF DRILL				
WILMINGTO	N DISTRICT	13. TOTA	L NO. OF O	VER-	: DISTURBED : UNDISTURBED	
As shown on drawing the per)	WH12-V-7	BURD 14. TOTA	EN SAMPL	ES TAKEN CORE BO	v <u>; 5 ; 0</u> ∞es ∩	
DRILLER Talon	Smith	15. ELEV	ATION GRC	UND WAT	rer N/A	
N OF HOLE		16. DATE	HOLE	STAR	TED COMPLETED 7/11/12	
	ED COLORADOR COLORADOR	-17. ELEV/	ATION TOP	OF HOLE	0.0	
IS OF WATER COLUN	MN <u>39.5</u> 0.0'	18. TOTA	L CORE RE	COVERY	FOR BORING N/A	
PTH OF HOLE	58.5'	-19. SIGN/	ATURE OF I	NSPECTO	R	
DEPTH (feet) C b C	CLASSIFICATION OF MATERIAL (Description) d	5	%CORE RECOVERY 8	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)	
38.0	0.0' TO 39.5' WATER OCEAN BOTTOM @39 SP, Tannish light gray, poorly graded sand.	२ 9.5'	_		Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of wate and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.	
42.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	graded sand, with some	clay.	-	2 	VIBRACORE BORING	
46.0	CL, Dark gray lean clay.			3	From 0.0' to 21.00' Ran 20' Rec: 20' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION Jar Number Classification 1 SP 2 SC 3 CL 4 SP 5 SC	
54.0	SP , Tannish light gray, poorly graded sand.			52.5 52.5	COMPLETION NOTE: Terminated hole at refusa or predetermined depth at 19' below ocean bottom	
	y Drilling Log	y Drilling Log DVISION SAD IGTON HARBOR COPY OF COLSTRICT As shown on drawing title WH12-V-7 DRILLER Talon Smith NOF HOLE CAL INCLINED DEG. FROM VERTICAL S OF WATER COLUMN 39.5' TH OF HOLE 58.5' DEEPTH Legend CLASSFICATION OF MATERNAL DEEPTH CHOLE 58.5' OCEAN BOTTOM @33 SP, Tannish light gray, poorly graded sand. SP-SC, Dark gray lean clay. 40.0 SP, Tannish light gray, poorly graded sand. SP-SC, Dark gray lean clay. 44.0 SP, Tannish light gray, poorly graded sand. SP, Tannish light gray, poorly graded sand.	y Drilling Log DVISION SAD INSTALL IGTON HARBOR 10. SIZE 11. DATU 10. SIZE 11. DATU 11. DATU 12. MANL 80 WATER COLUM DISTRICT As shown on drawing ble WH12-V-7 14. 1 TOTA BURE As DOW TO ADDISTRICT As shown on drawing ble WH12-V-7 14. 1 TOTA BURE 20. WATER COLUM 15. ELEV 10. DEC HOLE 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	y Drilling Log DVISION SAD INSTALLATON WILLMIN IGTON HARBOR 10. SIZE AND TYPE (11. DATUM FORELE 2. (079.0 E 2,300,574.0 12. MANUFACTUREF 38. INCLUNED WH12-V-7 38. INCLURED TO BISTRICT 38. INCLINED TO BEG. FROM VERTICAL 19. CILLED TO BEG. FROM VERTICAL 10. DEG. FROM VERTICAL 10. DISTAL CORE BE 10. DISTAL CORE BE 10. DISTAL CORE BE 10. SP. Tannish light gray, poorly graded sand. 10. DEG. FROM VERTICAL 10. DEG. FROM VERTICAL 10. DEG. FROM VERTICAL 10. DEG. FROM VERTICAL 10. DEC. SR.55 10. SP. Tannish light gray, poorly graded sand. 10. DEC. Dark gray lean clay. 10. SP. Tannish light gray, poorly graded sand. 10. SP. Tannish light gray, The tank tank tank tank tank tank tank tank	y Drilling Log Division SAD Will MINGTON IGTON HARBOR 10. Size and TYPE of Bit 10. Size and TYPE of Bit 11. Dartum Fore Levations Y O79.0 E 2,300,574.0 12. MANFACTURERS DESC Asthorem of desings the minimum of desings the minim of desings the minimum of desings the minimum of des	

	1			<u> </u>		BOXOR		OF Z SHEETS
ELEVATION (MLLW) a	DEPTH (feet) b	Legend c	CLASSIFICATION OF MATERIAL (Description) d	s	%CORE RECOVERY ®	SAMPLE NO. f	(Drilling time, w weathering, e	ater loss, depth of tc., if significant) q
	_		SP , Tannish light gray,			4		<u> </u>
-57.5			(continued from previous	/	-	57.5		
	58.0		CL Dark grav lean clay	/		5		
-58.5 /			BOTTOM OF HOLE AT	58.5'		58.5		
			SOILS ARE FIELD					
			VISUALLY CLASSIFIED	IN				
			UNIFIED SOIL					
			GLASSIFICATION STST					
	-							
	62.0							
	-							
	64.0							
	_							
	-							
	66.0							
	-							
	/0.0							
	-							
	-							
	72.0							
	_							
	74.0							
	=							
	76.0							
	 78 0—							
	'0.0_							
	-							
	80.0							

√ibrator	y Drilling Log		INSTALL ^A	TION			
PROJECT			10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE				
. LOCATION	NGTON HARB	OR	11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL MILLW				
N 46	5,693.0 E 2,3	300,304.0	12. MANUFACTURER'S DESIGNATION OF DRILL				
. DRILLING	WILMINGTO	N DISTRICT	13 TOTA			DISTURBED : UNDISTURBED	
. HOLE NO. and file num	(As shown on drawing title ber)	WH12-V-8	BURD		ES TAKEN		
NAME OF	DRILLER	Smith	15. ELEV/	ATION GRC	UND WAT	π <u>es υ</u> Έr Ν/Δ	
DIRECTIO	N OF HOLE	omur	16. DATE	HOLE	STAR		
		ED DEG. FROM VERTICAL	17. ELEV/	ATION TOP	OF HOLE	0.0	
. THICKNES		1N <u>32.0'</u>	18. TOTA	L CORE RE	COVERY I	FOR BORING N/A	
. TOTAL DE	PTH OF HOLE	50.0	19. SIGN/	ATURE OF I	NSPECTO	R	
ELEVATION (MLLW) a	DEPTH (feet) C	CLASSIFICATION OF MATERIALS (Description) d	3	%CORE RECOVERY e	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)	
-32.0	30.0 32.0 34.0 36.0	0.0' TO 32' WATER OCEAN BOTTOM @3 SP , Tannish light gray, coarse, poorly graded sar	2' nd.			Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer NOTE: Top of boring is defined as surface of water and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.	
-39.4	38.0	MH, Dark gray elastic silt			—39.4— 2 —41.6—	VIBRACORE BORING From 0.0' to 19.80' Ran 20' Rec: 20' Top of vibracore soil sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered. LAB CLASSIFICATION	
	42.0	CL, Dark gray sandy, clay	<i>I.</i>		3	Jar <u>Number</u> <u>Classification</u> 1 SP 2 SM 3 CL 4 SC Soils are Lab Classified in Accordance with ASTM-D2487 COMPLETION NOTE: Terminated hole at refusa or predetermined depth at 18' below ocean bottom	
-49.0 ENG FC MAR 71	48.0 PRM 1836 PREV	YOUS EDITIONS ARE OBSOLETE	PR	DJECT	MINGTO	HOLE NO. DN HARBOR WH12-V-8	

ROJECT V		INT Sheet		Hole No.: WH12-V-8					
				<u> </u>		BOX OR		OF 2 SHEETS	
(MLLW) a	(feet) b	Legend c	(Description) d	3	RECOVERY	SAMPLE NO. f	(Drilling time, w weathering, e	ater loss, depth of tc., if significant) g	
	-	•	SP-SM, Light gray, poorly	/		49 4			
-50.0	50.0	•		. 501					
	-		BOTTOMOF HOLE AT	50					
			SOILS ARE FIELD VISUALLY CLASSIFIED	IN					
			ACCORDANCE WITH T	HE					
	52.0		CLASSIFICATION SYST	ΈM					
	-								
	54.0								
	-								
	56.0								
	58.0								
	00.0								
	-								
	60.0								
	62.0								
	-								
	64.0								
	-								
	66 0								
	-								
	68.0								
	70.0								
	72.0								

				Но	le No.: WH12-V-9	
vibratory Drilling Loເ			TION WILMIN	IGTON	NDISTRICT SHEET 1 OF 2 SHEETS	
. PROJECT WILMINGTON HARE	BOR	10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE				
	300.056.0	MLLW				
	300,030.0	12. Manu	FACTURE	rs desig Vi	NATION OF DRILL bracore Snell	
WILMINGIC HOLE NO. (As shown on drawing title		13. TOTAL	NO. OF O	VER-		
and file number)	WH12-V-9	-14. TOTAL		CORE BO	xes 0	
Talor	Smith	15. ELEVA	ATION GRO	UND WAT	^{TER} N/A	
	DEG. FROM VERTICAL	16. DATE	HOLE	STAR	7/11/12 COMPLETED 7/11/12 7/11/12	
. THICKNESS OF WATER COLU	MN 39.2'	-17. ELEVA				
DEPTH DRILLED INTO ROCK	0.0'	19. SIGNA	TURE OF I	NSPECTO	R BORING IN/A	
		,	RCORE	BOX OR	REMARKS	
(MLLW) (feet) Legend a b c	(Description) d	3	RECOVERY 8	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant)	
					Time begin vibracoring: 0000 hrs.	
					Soils Field Classified by	
38.0					Zachry Nichols, Civil Engineer	
	0.0' TO 39.2' WATEF	ર				
-39.2	OCEAN BOTTOM @39	9.2'	-	—39.2—	defined as surface of water	
	CL, Dark brown lean clay	r,			and compensation is made	
40.0	inde wood.				Hole is 0.0 EL MLLW.	
				1		
42.0						
44.0						
<u>-44.2</u> ++.0	SW, Tannish gray, well				VIBRACORE BORING	
	graded sand.				Ran 20' Rec: 20'	
					Top of vibragara soil	
46.0					sample is logged as	
					beginning at Ocean	
					Bottom, When Run is greater than Recovery, the	
					difference is depicted as	
48.0					Assumed Not Recovered.	
_ ०ॅ० ०ॅ० _ ०० ०० ०					LAB CLASSIFICATION	
					Jar Number Classification	
- ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °					1 SC	
50.0				2	2 SP	
					Soils are Lab Classified in	
					Accordance with	
					Terminated hole at refusal	
					or predetermined depth at	
54.0					20 below ocean bottom	
_ 0 0 0 0 _ 0 0 0						
56.0 <mark></mark> 56.0		DD/				
	W R WILLING WID ADE OBOOLETE	PR			I TULE NU.	
ENG FORM 1836 PRE MAR 71	VIOUS EDITIONS ARE OBSOLETE		WILI	MINGTO	ON HARBOR WH12-V-9	

PROJECT V	VILMIN	GTON H	ARBOR INSTA				SHEET 2
ELEVATION	DEPTH	enend	CLASSIFICATION OF MATERIALS	%CORE			OF Z SHEET: MARKS water loss death of
(MLLW) a	(feet) b	C	(Description) d	RECOVERY	NO. f	weathering,	etc., if significant) g
	-	°°°°°°°	SW, Tannish gray, well graded sand <i>(continued from</i>)				
	_	<pre>020020 </pre>	previous page)				
	-				2		
	58.0						
	-	°°°°°° ● ○ ● ○					
-59.2		<u>°°o°°</u> o	BOTTOM OF HOLE AT 59 2'		-59.2-		
	00.0		VISUALLY CLASSIFIED IN				
	_		ACCORDANCE WITH THE UNIFIED SOIL				
	-		CLASSIFICATION SYSTEM				
	62.0						
	64.U						
	66.0						
	68.0						
	-						
	70.0						
	-						
	-						
	72.0						
	-						
	-						
	74.0						
	76.0						
	78.0						
	80.0						
)RM 19	36 PPEV		PROJECT		<u> </u>	HOLE NO.
MAR 71			1999 EDITIONS AND OBSOLE TE	WIL	MINGTO	N HARBOR	WH12-V-9

/ibratory Drilling Log		INSTALL				
PROJECT	SAD					
WILMINGTON HARBOR		11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL				
N 46,288.0 E 2,300,	290.0	MLLW 12. MANUEACTURER'S DESIGNATION OF DRUL				
	STRICT	Vibracore Snell				
HOLE NO.(As shown on drawing title		13. TOTAI BURD	l no. Of o' En sampli	VER- ES TAKEN	i disturbed i undisturbed	
and file number) VVI	112-V-10	14. TOTAL		CORE BO	xes 0	
Talon Smit	h	15. ELEV/	HOLE		TED COMPLETED	
	DEG. FROM VERTICAL		TOLL		//11/12 ²⁰¹¹ 7/11/12	
THICKNESS OF WATER COLUMN	41.7'	17. ELEV				
DEPTH DRILLED INTO ROCK	0.0'	19. SIGN/	ATURE OF I	NSPECTO	DR	
	CLASSIFICATION OF MATERIALS	, }	%CORE	BOXOR	REMARKS	
(MLLW) (feet) Legend a b c	(Description) d	, 	RECOVERY	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) q	
					Time begin vibracoring:	
					0000 hrs.	
40.0					Soils Field Classified by	
					Engineer	
	0.0' TO 41.7' WATER	ł				
_41.7	DCEAN BOTTOM @41	.7'		4 1.7	defined as surface of water	
42.0 SI	P, Light gray, coarse,			1	and compensation is made	
_42.7				42.7	Hole is 0.0 EL MLLW.	
	I, Dark gray elastic silt.					
44.0						
40.0				2		
					VIBRACORE BORING	
					Ran 20' Rec: 20'	
48.0					Top of vibracoro soil	
					sample is logged as	
					beginning at Ocean	
					greater than Recovery, the	
_50.3 50.0				50.3	difference is depicted as	
SI SI	P-SM, Light gray poorly			3	Assumed Not Recovered.	
	aded sill, line to mediul nd.	" 		- 		
	H, Dark gray elastic silt			4	Number Classification	
-52.5				50 F	1 SM	
SF	-SM, Light gray poorly] [2 MH 3 SM	
gn ∳ gn	aded silt, fine to mediur nd.	n			4 MH	
					5 SP-SM	
54.U						
				5	Soils are Lab Classified in	
					Accordance with ASTM-D2487	
	L Dark a training "			57	Terminated hole at refusa	
	I, Dark gray silt, with ood.				or predetermined depth at	
58.0				6	19.3 below ocean bottom	
NG FORM 1836 PREVIOUS I	EDITIONS ARE OBSOLETE	PR				
INDEX C 1			VVILI		WITZ-V-10	

LEVATION	DEPTH	Legend	CLASSIFICATION OF MATERIALS	%CORE	BOX OR SAMPLE	DISTRICT (Drilling time, w	OF Z SHEETS MARKS rater loss depth of
(MLLW) a	(feet) b	c	(Descaption) d	RECOVERY e	NO. f	weathering, e	g
			MH, Dark gray silt, with wood. (continued from				
	60.0		previous page)		6		
-61.0	-				61		
	62.0		VISUALLY CLASSIFIED IN				
	_		ACCORDANCE WITH THE UNIFIED SOIL				
			CLASSIFICATION SYSTEM				
	64.0						
	=						
	66.0						
	-						
	00.0						
	70.0						
	_						
	-						
	72.0						
	74.0						
	_						
	-						
	76.0						
	78.0						
	-						
	80.0-						
	00.0						
	-						
	82.0						
	_						

/ibrator	y Drilling	g Log		INSTALLA		IGTON			
				10. SIZE /	10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE				
LOCATION		HARBO		-11. DATUM FOR ELEVATION DATUM SHOWN BM or MSL MILLW					
N 46	6,357.0	E 2,3	00,043.0	12. MANUFACTURERS DESIGNATION OF DRILL					
DRILLING	WILMIN	IGTON	DISTRICT			VI WER-	DISTURBED UNDISTURBED		
HOLE NO.	(As shown on dr ber)	awing title	WH12-V-11	BURD		ES TAKEN			
NAME OF	DRILLER	Talon S	Smith	15. ELEV/	ATION GRC	DUND WAT	rer N/A		
DIRECTIO	N OF HOLE	ruion e		16. DATE	HOLE	STAR	TED COMPLETED 7/11/12		
	CAL	INCLINE	DEG. FROM VERTICAL	17. ELEV/	ATION TOP	OF HOLE	0.0		
DEPTH DE		R COLUMN	<u>32.9'</u>	18. TOTA	L CORE RE	COVERY	FOR BORING N/A		
TOTAL DE	PTH OF HOL	E	48.2	_19. SIGN/	ATURE OF I	INSPECTO	DR		
ELEVATION (MLLW) a	DEPTH (feet) b	egend C	CLASSIFICATION OF MATERIAL (Description) d	.\$	%CORE RECOVERY 8	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)		
	30.0	\approx					Time begin vibracoring:		
		\approx					0000 hrs.		
		$\sim\sim$					Soils Field Classified by		
		\approx					Zachry Nichols, Civil		
	32.0	\sim	0.0' TO 32.9' WATE	R					
-32.9		\sim	OCEAN BOTTOM @3	2.9'			NOTE: Top of boring is defined as surface of wate		
			SP, Tan to light brown,				and compensation is made		
	=		poony graded sand.				Hole is 0.0 FL MI I W.		
	34.0 _					1			
-36.1	36.0								
			CL, Dark gray lean clay,						
			with, trace wood.						
	=								
	38.0					2	VIBRACORE BORING		
							Ran 20' Rec: 20'		
							Top of vibracoro soil		
-39.7			SP SM Dork grove poort	,		39.7	sample is logged as		
	40.0	e	graded clayey sand, and	y			beginning at Ocean		
		•	decayed wood.				greater than Recovery. th		
	_					3	difference is depicted as		
	42 0-	•					Assumed Not Recovered.		
		•					LAB CLASSIFICATION		
		•					Number Classification		
-43.4			CL, Dark grav lean clav			43.4—	1 SM		
	44.0		clay, trace wood.				2 30 3 SM		
						4	4 CL		
) 5 5IVI		
-460							Soils are Lab Classified in		
-10.0	46.0	ŀĺ	SM, Gray, silty sand.		1	40-	Accordance with ASTM-D2487		
		• •				5	COMPLETION NOTE:		
40.0		·					Terminated hole at refusa		
-48.2	_40.U•	•	BOTTOM OF HOLE AT	48.2'		48.2-	or predetermined depth a		
							15.5 Delow ocean bottom		
			VISUALLY CLASSIFIED	IN					
	BM 183	6 PREV/	ACCORDANCE WITH T	HF PR	DJECT		HOLE NO.		
	100	U FREVIS	CLASSIFICATION SYS	ГЕМ	WILL	MINGTO	ON HARBOR WH12-V-11		

					Ho	le No.: WH12-V-12	
Vibratory D	rilling Log	SAD	INSTAL		GTON	N DISTRICT OF 1 SHEET	
1. PROJECT WILMINGTON HARBOR			10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE				
	80 523	200 221 0	11. DA I	UMFORELE	VATION L	MLLW	
IN 40,27			12. MAN	UFACTURE	RS DESIG Vi	NATION OF DRILL bracore Snell	
HOLE NO (As sho	_MINGION wn on drawing title		13. TOT.	AL NO. OF O	VER-		
and file number)	-D	WH12-V-12	14. TOT	AL NUMBER	CORE BO	xes 0	
. NAME OF DRILL	Talon	Smith	15. ELE	ATION GRO	UND WAT	^{rer} N/A	
DIRECTION OF	HOLE	DEG. FROM VERTICAL	16. DAT	E HOLE	STAR	TED COMPLETED 7/11/12 7/11/12	
		D 26.0'	17. ELE	ATION TOP	OF HOLE	0.0	
DEPTH DRILLEE	INTO ROCK	0.0'	18. TOT.	AL CORE RE	COVERY I	FOR BORING N/A	
. TOTAL DEPTH (OF HOLE	53.0'	13. 010				
ELEVATION DEP (MLLW) (fee a b	(H Legend t) c	CLASSIFICATION OF MATERIALS (Description) d		%CORE RECOVERY 8	SAMPLE NO. f	(Drilling time, water loss, depth of weathering, etc., if significant) 9	
34.		0.0' TO 36.9' WATER				Time begin vibracoring: 0000 hrs. Soils Field Classified by Zachry Nichols, Civil Engineer	
26.0	\approx	OCEAN BOTTOM @36	9'			NOTE: Top of boring is	
<u>-36.9</u> 38.		CL, Gray, silty sand, som clay.	e		—36.9—	defined as surface of wate and compensation is made for tide such that Top of Hole is 0.0 EL MLLW.	
40.					1		
42.					42.5	VIBRACORE BORING From 0.0' to 18.00' Ran 20' Rec: 20'	
					2	Top of vibracore soil	
<u>-44.0</u> 44.	0	SW, Grayish tan well grad fine to coarse sand.	led			sample is logged as beginning at Ocean Bottom. When Run is greater than Recovery, the difference is depicted as Assumed Not Recovered.	
46.					3	LAB CLASSIFICATION Jar <u>Number Classification</u> 1 SC 2 CL 3 SW-SM	
50.		SP-SC, Gray to dark gray poorly graded silty sand, v clay.	with		40.0	4 So Soils are Lab Classified in Accordance with ASTM-D2487	
-53.0					- 4	COMPLETION NOTE: Terminated hole at refusa or predetermined depth at 16.1' below ocean bottom	
		BOTTOM OF HOLE AT	53']	
		SOILS ARE FIFT D					
ING FORM	1836 PREV	OUSIENTIANSARE RESELETED	IN ^{PI}	ROJECT	_	HOLE NO.	
MAR 71		ACCORDANCE WITH TH	ΙE	WILI	MINGTO	DN HARBOR WHIZ-V-12	

/ibrator	y Drilling Log	DIVISION	INSTALLA	ATION WILMIN	IGTON	NDISTRICT SHEET 1	
			10. SIZE AND TYPE OF BIT 4" DIA VIBRACORE				
LOCATION			11. DATU	M FOR ELE	VATION E	DATUM SHOWN <i>BM or MSL</i> MLLW	
DRILLING	$4,972.0 \pm 2,2$	298,958.0	12. MANU	IFACTURE	RS DESIG	NATION OF DRILL	
				L NO. OF O	VER-		
and file number) WH12-V-13				EN SAMPL	ES TAKEN CORE BO	v <u>; 5 ; 0</u> ∞∈s ∩)	
. NAME OF	Talon	Smith	15. ELEV/	ATION GRO	DUND WAT	rer N/A	
DIRECTIO	N OF HOLE	DEG. FROM VERTICAL	16. DATE	HOLE	STAR	TED COMPLETED 7/12/12 7/12/12	
		D 26.0'	17. ELEV/	ATION TOP	OF HOLE	0.0	
DEPTH DF	RILLED INTO ROCK	0.0'	18. TOTA		COVERY	FOR BORING N/A	
. TOTAL DE	PTH OF HOLE	56.1'	13. 31014				
ELEVATION (MLLW) a	DEPTH (feet) C b C	CLASSIFICATION OF MATERIAL (Description) d	S	%CORE RECOVERY 8	SAMPLE NO. f	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant) 9	
	34.0					Time begin vibracoring:	
						0000 ms.	
						Soils Field Classified by	
			-			Engineer	
	30.0		`			NOTE: Top of boring is	
-36.9		OCEAN BOTTOM @3	5.9' nd	-	36.9	defined as surface of wate	
		ວບ, Dark gray, clayey sa	nu.			for tide such that Top of	
	38.0					Hole is 0.0 EL MLLW.	
					1		
	40.0						
-41.4					41 4		
		CL, Dark gray lean clay.					
	42.0					From 0.0' to 25.20'	
						Ran 20' Rec: 20'	
						Top of vibracore soil	
	44.0					sample is logged as	
						Bottom. When Run is	
						greater than Recovery, th	
					2	Assumed Not Recovered	
	46.0						
						Jar	
						Number Classification	
						2 CH	
	48.0					3 SM	
						4 SC 5 SC	
-406							
	50.0	SW, Dark gray, well grad	ed	1	49.6-	Soils are Lab Classified in Accordance with	
		sand, trace, wood.				ASTM-D2487	
					3		
						COMPLETION NOTE:	
-52.2	52.0					Terminated hole at refusa	
		CL, Dark gray sandy lear	ו			19.2' below ocean bottom	
		udy.			4		
NG FC	RM 1836 PREV	OUS EDITIONS ARE OBSOLETE	PR	OJECT	MNIOT	HOLE NO.	
MAR 71				WIL	MINGTO	JN HARBOR WH12-V-13	

	/ILMINGTON HARBOR			INSTALLA	Hole No.: WH12-V-13					
LEVATION (MLLW)	DEPTH (feet)	Legend	CLASSIFICATION OF MATERIAL (Description)	5 V	%CORE RECOVERY	BOX OR SAMPLE	DISTRICT REI (Drilling time, weathering of	OF Z SHEETS MARKS aterioss, depth of tr. # sign#icagt)		
в	54.0 ⁼	C	d CL Dark gray sandy loar	<u>,</u>	e	f	weathering, e	g		
			clay. (continued from	1						
			previous page)			4				
-55.7			SP-SM Dark grav, poorly	,						
	-56.0-		graded silty sand.	/						
-56.1			BOTTOM OF HOLE AT	56.1'						
	=		SOILS ARE FIELD VISUALLY CLASSIFIED	IN						
	58.0		ACCORDANCE WITH T UNIFIED SOIL	HE						
	_		CLASSIFICATION SYST	ΈM						
	60.0									
	_									
	62.0									
	_									
	64.0									
	-									
	66.0									
	-									
	=									
	68.0									
	-									
	-									
	70.0									
	-									
	72.0									
	-									
	74.0									
	76.0									
	=									
	78.0									
				DD/	LECT		 			

LEVATION (MLLW)	DEPTH (feet)	Legend	CLASSIFICATION OF MATERIALS (Description)	%CORE RECOVERY	BOX OR SAMPLE	REMARKS (Drilling time, water loss, depth of
-55.3	`b´	U	d ´	6	f	weaurening, etc., ir significant) g
	-		BOTTOM OF HOLE AT 55.3	'		
	56.0		SOILS ARE FIELD			
	-		ACCORDANCE WITH THE			
	-		CLASSIFICATION SYSTEM			
	58.0					
	-					
	-					
	60.0					
	-					
	-					
	62.0					
	-					
	-					
	64.0					
	-					
	-					
	66.0					
	-					
	68.0					
	-					
	70.0					
	-					
	72 0					
	12.0					
	-					
	74.0					
	/4.U_ 					
	-					
	76.0					
	/6.0					
	-					
	78.0					
	-					
NG EC	RM 18	336 PRE		PROJECT		HOLE NO.

Wilmington Harbor Improvements Project1Appendix C - Geotechnical Engineering